Universal Distributed Quantum Computing on Superconducting Qutrits with Dark Photons

被引:10
|
作者
Hua, Ming [1 ,2 ,3 ]
Tao, Ming-Jie [1 ]
Alsaedi, Ahmed [2 ]
Hayat, Tasawar [2 ,4 ]
Deng, Fu-Guo [1 ,2 ]
机构
[1] Beijing Normal Univ, Dept Phys, Appl Opt Beijing Area Major Lab, Beijing 100875, Peoples R China
[2] King Abdulaziz Univ, Fac Sci, NAAM Res Grp, Dept Math, Jeddah 21589, Saudi Arabia
[3] Tianjin Polytech Univ, Sch Sci, Dept Appl Phys, Tianjin 300387, Peoples R China
[4] Quaid I Azam Univ, Dept Math, Islamabad 44000, Pakistan
基金
中国国家自然科学基金;
关键词
distributed quantum computing; superconducting qutrits; dark photons; quantum information; quantum electrodynamics; MICROWAVE PHOTONS; STATE TRANSFER; ENTANGLEMENT; SPIN; REALIZATION; COMPUTATION; ALGORITHMS; QUBITS; GATE;
D O I
10.1002/andp.201700402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A one-step scheme is presented to construct the controlled-phase gate deterministically on remote transmon qutrits coupled to different resonators connected by a superconducting transmission line for an universal distributed quantum computing. Different from previous work on remote superconducting qubits, the present gate is implemented with coherent evolutions of the entire system in the all-resonance regime assisted by the dark photons to robust against the transmission line loss, which allows the possibility of the complex designation of a long-length transmission line to link lots of circuit QEDs. The length of the transmission line can reach the scale of several meters, which makes this scheme suitable for large-scale distributed quantum computing. This gate is a fast quantum entangling operation with a high fidelity of about 99%. Compared with previous work in other quantum systems for a distributed quantum computing, under the all-resonance regime, the present proposal does not require classical pulses and ancillary qubits, which relaxes the difficulty of its implementation largely.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Distributed Quantum Computing with Photons and Atomic Memories
    Oh, Eun
    Lai, Xuanying
    Wen, Jianming
    Du, Shengwang
    ADVANCED QUANTUM TECHNOLOGIES, 2023, 6 (06)
  • [2] Quantum key distribution on composite photons, polarization qutrits
    S. P. Kulik
    S. N. Molotkov
    I. V. Radchenko
    JETP Letters, 2012, 96 : 336 - 341
  • [3] Quantum key distribution on composite photons, polarization qutrits
    Kulik, S. P.
    Molotkov, S. N.
    Radchenko, I. V.
    JETP LETTERS, 2012, 96 (05) : 336 - 341
  • [4] Photons for quantum computing
    不详
    PHOTONICS SPECTRA, 2011, 45 (04) : 16 - +
  • [5] On the resistance of quantum cryptography with mixed bases on composite photons, polarization qutrits
    S. N. Molotkov
    JETP Letters, 2014, 99 : 720 - 724
  • [6] On the resistance of quantum cryptography with mixed bases on composite photons, polarization qutrits
    Molotkov, S. N.
    JETP LETTERS, 2014, 99 (12) : 720 - 724
  • [7] Quantum communication with dark photons
    van Enk, SJ
    Kimble, HJ
    Cirac, JI
    Zoller, P
    PHYSICAL REVIEW A, 1999, 59 (04): : 2659 - 2664
  • [8] Quantum computing using photons
    Christophe Couteau
    The European Physical Journal A, 61 (4)
  • [9] Superconducting quantum computing
    Wendin, G
    PHYSICS WORLD, 2003, 16 (05) : 24 - 26
  • [10] Search for Dark Photons with Superconducting Radio Frequency Cavities
    Romanenko, A.
    Harnik, R.
    Grassellino, A. R.
    Pilipenko, R.
    Pischalnikov, Y.
    Liu, Z.
    Melnychuk, O. S.
    Giaccone, B.
    Pronitchev, O.
    Khabiboulline, T.
    Frolov, D.
    Belomestnykh, S.
    Berlin, A.
    Hook, A.
    PHYSICAL REVIEW LETTERS, 2023, 130 (26)