Mining yeast gene microarray data with latent variable models

被引:0
|
作者
Staiano, Antonino [1 ]
Tagliaferri, Roberto [1 ]
De Vinco, Lara [1 ]
Ciaramella, Angelo [1 ]
Raiconi, Giancarlo [1 ]
Longo, Giuseppe [1 ]
Miele, Gennaro [1 ]
Amato, Roberto [1 ]
Del Mondo, Carmine [1 ]
Donalek, Ciro [1 ]
Mangano, Gianpiero [1 ]
Di Bernardo, Diego [1 ]
机构
[1] Univ Salerno, DMI, I-84084 Fisciano, Italy
关键词
probabilistic principal surfaces; visualization; clustering; data mining; yeast genes;
D O I
10.1007/1-4020-3432-6_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gene-expression microarrays make it possible to simultaneously measure the rate at which a cell or tissue is expressing each of its thousands of genes. One can use these comprehensive snapshots of biological activity to infer regulatory pathways in cells, identify novel targets for drug design, and improve diagnosis, prognosis, and treatment planning for those suffering from disease. However, the amount of data this new technology produces is more than one can manually analyze. Hence, the need for automated analysis of microarray data offers an opportunity for machine learning to have a significant impact on biology and medicine. Probabilistic Principal Surfaces defines a unified theoretical framework for nonlinear latent variable models embracing the Generative Topographic Mapping as a special case. This article describes the use of PPS for the analysis of yeast gene expression levels from microarray chips showing its effectiveness for high-D data visualization and clustering.
引用
收藏
页码:81 / 89
页数:9
相关论文
共 50 条
  • [1] Probabilistic principal surfaces for yeast gene microarray data mining
    Staiano, A
    De Vinco, L
    Ciaramella, A
    Raiconi, G
    Tagliaferri, R
    Amato, R
    Longo, G
    Donalek, C
    Miele, G
    Di Bernardo, D
    [J]. FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2004, : 202 - 208
  • [2] Discriminative mining of gene microarray data
    Lu, JP
    Wang, Y
    Wang, ZY
    Xuan, JH
    Kung, SY
    Gu, ZP
    Clarke, R
    [J]. NEURAL NETWORKS FOR SIGNAL PROCESSING XI, 2001, : 23 - 32
  • [3] yMGV: helping biologists with yeast microarray data mining
    Le Crom, S
    Devaux, F
    Jacq, C
    Marc, P
    [J]. NUCLEIC ACIDS RESEARCH, 2002, 30 (01) : 76 - 79
  • [4] Data mining and visualisation of microarray gene expression data
    Alan Robinson
    Alvis Brazma
    [J]. Nature Genetics, 1999, 23 (Suppl 3) : 71 - 71
  • [5] Microarray data mining using gene ontology
    Li, Songhui
    Becich, Michael J.
    [J]. Studies in Health Technology and Informatics, 2004, 107 : 778 - 782
  • [6] Discriminatory mining of gene expression microarray data
    Wang, ZY
    Wang, Y
    Lu, JP
    Kung, SY
    Zhang, JY
    Lee, R
    Xuan, JH
    Khan, JV
    [J]. JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2003, 35 (03): : 255 - 272
  • [7] Discriminatory Mining of Gene Expression Microarray Data
    Zuyi Wang
    Yue Wang
    Jianping Lu
    Sun-Yuan Kung
    Junying Zhang
    Richard Lee
    Jianhua Xuan
    Javed Khan
    Robert Clarke
    [J]. Journal of VLSI signal processing systems for signal, image and video technology, 2003, 35 : 255 - 272
  • [8] Microarray data mining using gene ontology
    Li, SH
    Becich, MJ
    Gilbertson, J
    [J]. MEDINFO 2004: PROCEEDINGS OF THE 11TH WORLD CONGRESS ON MEDICAL INFORMATICS, PT 1 AND 2, 2004, 107 : 778 - 782
  • [9] Gene Screening and Clustering of Yeast Microarray Gene Expression Data
    Lee, Kyunga
    Kim, Taehoun
    Kim, Jaehee
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2011, 24 (06) : 1077 - 1094
  • [10] A latent variable approach for meta-analysis of gene expression data from multiple microarray experiments
    Choi, Hyungwon
    Shen, Ronglai
    Chinnaiyan, Arul M.
    Ghosh, Debashis
    [J]. BMC BIOINFORMATICS, 2007, 8 (1)