Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction

被引:616
|
作者
Li, Qiheng [1 ]
Chen, Wenxing [1 ]
Xiao, Hai [1 ]
Gong, Yue [4 ]
Li, Zhi [1 ]
Zheng, Lirong [2 ]
Zheng, Xusheng [3 ]
Yan, Wensheng [3 ]
Cheong, Weng-Chon [1 ]
Shen, Rongan [1 ]
Fu, Ninghua [1 ]
Gu, Lin [4 ]
Zhuang, Zhongbin [5 ,6 ]
Chen, Chen [1 ]
Wang, Dingsheng [1 ]
Peng, Qing [1 ]
Li, Jun [1 ]
Li, Yadong [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
[2] Chinese Acad Sci, Beijing Synchrotron Radiat Facil, Inst High Energy Phys, Beijing 100049, Peoples R China
[3] Univ Sci & Technol China, NSRL, Hefei 230029, Anhui, Peoples R China
[4] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100190, Peoples R China
[5] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[6] Beijing Univ Chem Technol, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
copolymer pyrolysis; Fe-isolated single atoms; oxygen reduction reaction; sulfur-nitrogen codoped carbon; PARTICLE-SIZE; FUEL-CELLS; CATALYSTS; ELECTROCATALYSTS; NITROGEN; SULFUR; PERFORMANCE; OXIDATION; ALKALINE; DESIGN;
D O I
10.1002/adma.201800588
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Heteroatom-doped Fe-NC catalyst has emerged as one of the most promising candidates to replace noble metal-based catalysts for highly efficient oxygen reduction reaction (ORR). However, delicate controls over their structure parameters to optimize the catalytic efficiency and molecular-level understandings of the catalytic mechanism are still challenging. Herein, a novel pyrrole-thiophene copolymer pyrolysis strategy to synthesize Fe-isolated single atoms on sulfur and nitrogen-codoped carbon (Fe-ISA/SNC) with controllable S, N doping is rationally designed. The catalytic efficiency of Fe-ISA/SNC shows a volcano-type curve with the increase of sulfur doping. The optimized Fe-ISA/SNC exhibits a half-wave potential of 0.896 V (vs reversible hydrogen electrode (RHE)), which is more positive than those of Fe-isolated single atoms on nitrogen codoped carbon (Fe-ISA/NC, 0.839 V), commercial Pt/C (0.841 V), and most reported nonprecious metal catalysts. Fe-ISA/SNC is methanol tolerable and shows negligible activity decay in alkaline condition during 15 000 voltage cycles. X-ray absorption fine structure analysis and density functional theory calculations reveal that the incorporated sulfur engineers the charges on N atoms surrounding the Fe reactive center. The enriched charge facilitates the rate-limiting reductive release of OH* and therefore improved the overall ORR efficiency.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Isolated single iron atoms anchored on a N, S-codoped hierarchically ordered porous carbon framework for highly efficient oxygen reduction
    Liu, Xinghuan
    Zhai, Xingwu
    Sheng, Wenbo
    Tu, Juan
    Zhao, Zeyu
    Shi, Yulin
    Xu, Caixia
    Ge, Guixian
    Jia, Xin
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (16) : 10110 - 10119
  • [2] Fe/N Codoped Carbon Nanocages with Single-Atom Feature as Efficient Oxygen Reduction Reaction Electrocatalyst
    Jia, Nan
    Xu, Qiaozhen
    Zhao, Fengqi
    Gao, Hong-Xu
    Song, Jiaxin
    Chen, Pei
    An, Zhongwei
    Chen, Xinbing
    Chen, Yu
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (09): : 4982 - 4990
  • [3] N-doped and Fe-, N-codoped carbon: tuning of porous structures for highly efficient oxygen reduction reaction
    Lu Xiao
    Qianqian Yang
    Min Jie Wang
    Zhan Xin Mao
    Jing Li
    Zidong Wei
    Journal of Materials Science, 2018, 53 : 15246 - 15256
  • [4] N-doped and Fe-, N-codoped carbon: tuning of porous structures for highly efficient oxygen reduction reaction
    Xiao, Lu
    Yang, Qiandian
    Wang, Min Jie
    Mao, Zhan Xin
    Li, Jing
    Wei, Zidong
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (21) : 15246 - 15256
  • [5] Interconnected Fe, S, N-Codoped Hollow and Porous Carbon Nanorods as Efficient Electrocatalysts for the Oxygen Reduction Reaction
    Wang, Yinling
    Zhu, Chengzhou
    Feng, Shuo
    Shi, Qiurong
    Fu, Shaofang
    Du, Dan
    Zhang, Qiang
    Lin, Yuehe
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (46) : 40298 - 40306
  • [6] Optimized Enhancement Effect of Sulfur in Fe-N-S Codoped Carbon Nanosheets for Efficient Oxygen Reduction Reaction
    Ni, Baoxia
    Chen, Rui
    Wu, Luming
    Xu, Xueyan
    Shi, Chengxiang
    Sun, Pingchuan
    Chen, Tiehong
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (21) : 23995 - 24006
  • [7] Porous Fe-N-codoped carbon microspheres: an efficient and durable electrocatalyst for oxygen reduction reaction
    Li, Xianghong
    Sun, Xu
    Ren, Xiang
    Wu, Dan
    Kuang, Xuan
    Ma, Hongmin
    Yan, Tao
    Wei, Qin
    INORGANIC CHEMISTRY FRONTIERS, 2018, 5 (09): : 2211 - 2217
  • [8] Fe, N codoped porous carbon nanosheets for efficient oxygen reduction reaction in alkaline and acidic media
    Dong, Liang
    Wang, Weiping
    Zang, Jianbing
    Zhang, Yan
    Wang, Zhiyuan
    Su, Jing
    Wang, Yanhui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (31) : 14273 - 14280
  • [9] Mo isolated single atoms on S, N-codoped carbon as efficient catalyst for hydrogen evolution reaction: A theoretical evaluation
    Gao, Xiaoping
    Zhou, Yanan
    Tan, Yujia
    Yang, Bowen
    Cheng, Zhiwen
    Shen, Zhemin
    Jia, Jinping
    APPLIED SURFACE SCIENCE, 2019, 473 : 770 - 776
  • [10] Single Cobalt Atom and N Codoped Carbon Nanofibers as Highly Durable Electrocatalyst for Oxygen Reduction Reaction
    Cheng, Qingqing
    Yang, Lijun
    Zou, Liangliang
    Zou, Zhiqing
    Chen, Chi
    Hu, Zheng
    Yang, Hui
    ACS CATALYSIS, 2017, 7 (10): : 6864 - 6871