It is imperative to remove endocrine disrupting compounds (EDCs) from water because of their damage to human health via drinking, eating and skin contacting. Herein, a variety of UiO-67 samples, with different numbers of defects were screened for the adsorption elimination of dimethyl phthalate (DMP) and phthalic acid (PA) in aqueous solution. UiO-67-30BA (benzoic acid regulator with 30 times molar number of ligands) which had the greatest number of missing-links and the highest specific surface area, was determined by thermogravimetric analysis (TGA), nuclear magnetic resonance (H-1-NMR), and energy-dispersive X-ray spectroscopy (EDS) and N-2 adsorption-desorption. The adsorption kinetics of PA and DMP on UiO-67-30BA well obeyed pseudo-first-order kinetic model and the adsorption isotherms well followed Langmuir model. Adsorption thermodynamics indicated that the adsorption process was an exothermic and spontaneous process. Remarkably, 110-67-30BA with the most defects showed the third highest PA and highest DMP adsorption capacity compared with reported MOFs materials, which were 434.0 and 228.1 mg/g, respectively. Furthermore, the dominant interactions between PA and UiO-67 samples were electrostatic interaction and n-n interaction, while the adsorption of DMP depended on pi-pi interaction. The introduction of missing-links not only provided an outstanding adsorbent UiO-67-30BA for DMP and PA, but also revealed the different adsorption mechanisms of the adsorbents. (C) 2020 Elsevier B.V. All rights reserved.