Acetabular defect classification in times of 3D imaging and patient-specific treatment protocols

被引:3
|
作者
Horas, K. [1 ]
Arnholdt, J. [1 ]
Steinert, A. F. [1 ]
Hoberg, M. [1 ]
Rudert, M. [1 ]
Holzapfel, B. M. [1 ,2 ]
机构
[1] Univ Wurzburg, Dept Orthopaed Surg, Koenig Ludwig Haus,Brettreichstr 11, D-97074 Wurzburg, Germany
[2] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Regenerat Med, Brisbane, Qld, Australia
来源
ORTHOPADE | 2017年 / 46卷 / 02期
关键词
Acetabular bone defects; Acetabular revision arthroplasty; Paprosky classification; Computed tomography; 3D analysis; BONE STOCK LOSS; PELVIC OSTEOLYSIS; REVISION HIP; COMPUTED-TOMOGRAPHY; UNITED-STATES; RELIABILITY; RADIOGRAPHS; VALIDITY; ARTHROPLASTY; SYSTEMS;
D O I
10.1007/s00132-016-3378-y
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Parallel to the rising number of revision hip procedures, an increasing number of complex periprosthetic osseous defects can be expected. Stable long-term fixation of the revision implant remains the ultimate goal of the surgical protocol. Within this context, an elaborate preoperative planning process including anticipation of the periacetabular defect form and size and analysis of the remaining supporting osseous elements are essential. However, detection and evaluation of periacetabular bone defects using an unsystematic analysis of plain anteroposterior radiographs of the pelvis is in many cases difficult. Therefore, periacetabular bone defect classification schemes such as the Paprosky system have been introduced that use standardized radiographic criteria to better anticipate the intraoperative reality. Recent studies were able to demonstrate that larger defects are often underestimated when using the Paprosky classification and that the intra- and interobserver reliability of the system is low. This makes it hard to compare results in terms of defects being studied. Novel software tools that are based on the analysis of CT data may provide an opportunity to overcome the limitations of native radiographic defect analysis. In the following article we discuss potential benefits of these novel instruments against the background of the obvious limitations of the currently used native radiographic defect analysis.
引用
收藏
页码:168 / 178
页数:11
相关论文
共 50 条
  • [1] Acetabular defect classification in times of 3D imaging and patient-specific treatment protocols; [Periazetabuläre Defektklassifikation in Zeiten von 3D-Bildgebung und patientenspezifischer Therapieprotokolle]
    Horas K.
    Arnholdt J.
    Steinert A.F.
    Hoberg M.
    Rudert M.
    Holzapfel B.M.
    Der Orthopäde, 2017, 46 (2): : 168 - 178
  • [2] 3D printing of implants for patient-specific acetabular fracture fixation: an experimental study
    Matevž Tomaževič
    Anže Kristan
    Atul F. Kamath
    Matej Cimerman
    European Journal of Trauma and Emergency Surgery, 2021, 47 : 1297 - 1305
  • [3] 3D printing of implants for patient-specific acetabular fracture fixation: an experimental study
    Tomazevic, Matevz
    Kristan, Anze
    Kamath, Atul F.
    Cimerman, Matej
    EUROPEAN JOURNAL OF TRAUMA AND EMERGENCY SURGERY, 2021, 47 (05) : 1297 - 1305
  • [4] 3D Printed Patient-Specific Acetabular Jig for Cup Placement in Total Hip Arthroplasty
    Abhishek Mishra
    Tarun Verma
    Gaurang Rajkumar
    Amit Agarwal
    Lalit Sharma
    Indian Journal of Orthopaedics, 2020, 54 : 174 - 180
  • [5] 3D Printed Patient-Specific Acetabular Jig for Cup Placement in Total Hip Arthroplasty
    Mishra, Abhishek
    Verma, Tarun
    Rajkumar
    Agarwal, Gaurang
    Sharma, Amit
    Maini, Lalit
    INDIAN JOURNAL OF ORTHOPAEDICS, 2020, 54 (02) : 174 - 180
  • [6] 3D Printed Patient-Specific Mould for HDR GYN Treatment
    Wadi-Ramahi, S.
    Jastaniyah, N.
    Constantinescu, C.
    Nobeh, A.
    DeBlois, F.
    MEDICAL PHYSICS, 2018, 45 (06) : E594 - E595
  • [7] Development of patient-specific molecular imaging phantoms using a 3D printer
    Gear, J. I.
    Long, C.
    Rushforth, D.
    Chittenden, S. J.
    Cummings, C.
    Flux, G. D.
    MEDICAL PHYSICS, 2014, 41 (08) : 525 - 527
  • [8] The design, production and clinical application of 3D patient-specific implants with drilling guides for acetabular surgery
    Merema, B. J.
    Kraeima, J.
    ten Duis, K.
    Wendt, K. W.
    Warta, R.
    Vos, E.
    Schepers, R. H.
    Witjes, M. J. H.
    IJpma, F. F. A.
    INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2017, 48 (11): : 2540 - 2547
  • [9] Bioprinting of 3D patient-specific auricular scaffolds
    Martinez, H.
    Sundberg, J.
    Prakash, S.
    Seniger, M.
    Gatenholm, P.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2012, 6 : 153 - 153
  • [10] Applications of patient-specific 3D printing in medicine
    Heller, M.
    Bauer, H-K.
    Goetze, E.
    Gielisch, M.
    Roth, K. E.
    Maier, G. S.
    Drees, P.
    Dorweiler, B.
    Ghazy, A.
    Neufurth, M.
    Mueller, W. E. G.
    Schoerder, H. C.
    Wang, X. H.
    Vahl, C-F
    Al-Nawas, B.
    INTERNATIONAL JOURNAL OF COMPUTERIZED DENTISTRY, 2016, 19 (04) : 323 - 339