Hysteretic model for steel-concrete composite shear walls subjected to in-plane cyclic loading

被引:39
|
作者
Zhao, Weiyi [1 ]
Guo, Quanquan [1 ]
Huang, Zeyu [2 ]
Tan, Li [1 ]
Chen, Jun [1 ]
Ye, Yinghua [1 ]
机构
[1] Beihang Univ, Sch Transportat Sci & Engn, Beijing 100191, Peoples R China
[2] Architectural Design & Res Inst Guangdong Prov, Guangzhou 510010, Guangdong, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Steel-concrete composite shear wall; Hysteretic model; Negative post-peak stiffness; Collapse; BEHAVIOR;
D O I
10.1016/j.engstruct.2015.10.031
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Steel-concrete composite (SC) shear walls are being widely used as an alternative to reinforced concrete walls. Investigations on seismic behavior of SC walls have been conducted to develop design specifications for safety-related nuclear facilities. However, there is a lack of hysteretic models that can be used to predict structural performance as the structure approaches collapse. This paper presents (a) the analysis of experimental results of 32 SC wall specimens, and (b) the derivation and calibration of a quadri-linear backbone with negative post-peak stiffness and associated hysteretic rules. Different cross section shapes and loading configurations were used to test the SC wall specimens. Based on the experimental results, equations for stiffnesses and loads are derived from a mechanics based model, and basic hysteretic rules are employed to describe the response of SC walls subjected to implane cyclic loading. Calibrations are conducted to suggest the reduction factors for the Young's moduli of concrete and steel that reflect the plasticity extension and damage accumulation. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:461 / 470
页数:10
相关论文
共 50 条
  • [1] Response of steel-concrete composite panels to in-plane loading
    Danay, Ari
    NUCLEAR ENGINEERING AND DESIGN, 2012, 242 : 52 - 62
  • [2] Performance of Composite Shear Walls Subjected to In-plane Cyclic Loading-A Numerical Parametric Study
    Labibzadeh, Mojtaba
    Salehnia, Anis
    Hossain, Khandaker M. A.
    Jing, Deng-Hu
    PERIODICA POLYTECHNICA-CIVIL ENGINEERING, 2021, 65 (04): : 1134 - 1152
  • [3] Hysteretic performance of dovetail profiled steel-concrete composite sandwich shear walls
    Zhang, Sumei
    Huang, Zhenfeng
    Guo, Lanhui
    ENGINEERING STRUCTURES, 2022, 256
  • [4] Axial and hysteretic behavior of T-shaped steel-concrete composite shear walls
    Wang, Yunhe
    Guo, Lanhui
    Li, Hongda
    Fu, Feng
    STRUCTURES, 2022, 38 : 279 - 291
  • [5] Tests on Thin Reinforced Concrete Walls Subjected to In-Plane and Out-of-Plane Cyclic Loading
    Almeida, Joao
    Prodan, Ovidiu
    Rosso, Angelica
    Beyer, Katrin
    EARTHQUAKE SPECTRA, 2017, 33 (01) : 323 - 345
  • [6] Cyclic In-Plane Shear Behavior of Composite Plate Shear Walls-Concrete Encased
    Ji, Xiaodong
    Zhang, Shaohui
    Cheng, Xiaowei
    Jia, Xiangfu
    Xu, Mengchao
    JOURNAL OF STRUCTURAL ENGINEERING, 2023, 149 (11)
  • [7] ENERGY DISSIPATION OF STEEL-CONCRETE COMPOSITE BEAMS SUBJECTED TO VERTICAL CYCLIC LOADING
    Liu, Jing
    Lyu, Fei
    Ding, Fa-Xing
    Liu, Xue-Mei
    ADVANCED STEEL CONSTRUCTION, 2022, 18 (03): : 658 - 669
  • [8] Experimental Analysis of Reinforced Concrete Block Masonry Walls Subjected to In-Plane Cyclic Loading
    Haach, Vladimir G.
    Vasconcelos, Graca
    Lourenco, Paulo B.
    JOURNAL OF STRUCTURAL ENGINEERING, 2010, 136 (04) : 452 - 462
  • [9] Study on steel plate reinforced concrete panels subjected to cyclic in-plane shear
    Ozaki, M
    Akita, S
    Osuga, H
    Nakayama, T
    Adachi, N
    NUCLEAR ENGINEERING AND DESIGN, 2004, 228 (1-3) : 225 - 244
  • [10] Macro modeling of steel-concrete composite shear walls
    Haghi, Nakisa
    Epackachi, Siamak
    Kazemi, Mohammad Taghi
    STRUCTURES, 2020, 23 : 383 - 406