An intelligent hybridization of ARIMA with machine learning models for time series forecasting

被引:111
|
作者
Santos Junior, Domingos S. de O. [1 ,2 ]
de Oliveira, Joao F. L. [2 ]
de Mattos Neto, Paulo S. G. [1 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, Recife, PE, Brazil
[2] Univ Pernambuco, Recife, PE, Brazil
关键词
Machine learning; Autoregressive integrated moving average (ARIMA); Time series forecasting; Error series; Hybrid system; Artificial Neural Networks; SUPPORT VECTOR MACHINES; ARTIFICIAL NEURAL-NETWORKS; HYBRID ARIMA; ANN MODEL; SYSTEM;
D O I
10.1016/j.knosys.2019.03.011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The development of accurate forecasting systems can be challenging in real-world applications. The modeling of real-world time series is a particularly difficult task because they are generally composed of linear and nonlinear patterns that are combined in some form. Several hybrid systems that combine linear and nonlinear techniques have obtained relevant results in terms of accuracy in comparison with single models. However, the best combination function of the forecasting of the linear and nonlinear patterns is unknown, which makes this modeling an open question. This work proposes a hybrid system that searches for a suitable function to combine the forecasts of linear and nonlinear models. Thus, the proposed system performs: (i) linear modeling of the time series; (ii) nonlinear modeling of the error series; and (iii) a data-driven combination that searches for: (iii.a) the most suitable function, between linear and nonlinear formalisms, and (iii.b) the number of forecasts of models (i) and (ii) that maximizes the performance of the combination. Two versions of the hybrid system are evaluated. In both versions, the ARIMA model is used in step (i) and two nonlinear intelligent models - Multi-Layer Perceptron (MLP) and Support Vector Regression (SVR) - are used in steps (ii) and (iii), alternately. Experimental simulations with six real-world complex time series that are well-known in the literature are evaluated using a set of popular performance metrics. Our results show that the proposed hybrid system attains superior performance when compared with single and hybrid models in the literature. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:72 / 86
页数:15
相关论文
共 50 条
  • [1] Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series
    Frédy Pokou
    Jules Sadefo Kamdem
    François Benhmad
    Computational Economics, 2024, 63 : 1349 - 1399
  • [2] Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series
    Pokou, Fredy
    Kamdem, Jules Sadefo
    Benhmad, Francois
    COMPUTATIONAL ECONOMICS, 2024, 63 (04) : 1349 - 1399
  • [3] Hybridization of intelligent techniques and ARIMA models for time series prediction
    Valenzuela, O.
    Rojas, I.
    Rojas, F.
    Pomares, H.
    Herrera, L. J.
    Guillen, A.
    Marquez, L.
    Pasadas, M.
    FUZZY SETS AND SYSTEMS, 2008, 159 (07) : 821 - 845
  • [4] Sequence in Hybridization of Statistical and Intelligent Models in Time Series Forecasting
    Hajirahimi, Zahra
    Khashei, Mehdi
    NEURAL PROCESSING LETTERS, 2022, 54 (05) : 3619 - 3639
  • [5] Sequence in Hybridization of Statistical and Intelligent Models in Time Series Forecasting
    Zahra Hajirahimi
    Mehdi Khashei
    Neural Processing Letters, 2022, 54 : 3619 - 3639
  • [6] A novel hybridization of artificial neural networks and ARIMA models for time series forecasting
    Khashei, Mehdi
    Bijari, Mehdi
    APPLIED SOFT COMPUTING, 2011, 11 (02) : 2664 - 2675
  • [7] ARIMA MODELS FOR FORECASTING METEOROLOGICAL TIME-SERIES
    DUCHON, CE
    KOSCIELNY, AJ
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1981, 62 (06) : 886 - 886
  • [8] A survey on machine learning models for financial time series forecasting
    Tang, Yajiao
    Song, Zhenyu
    Zhu, Yulin
    Yuan, Huaiyu
    Hou, Maozhang
    Ji, Junkai
    Tang, Cheng
    Li, Jianqiang
    NEUROCOMPUTING, 2022, 512 : 363 - 380
  • [9] Hyperparameters Tuning for Machine Learning Models for Time Series Forecasting
    Peter, Gladilin
    Matskevichus, Maria
    2019 SIXTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORKS ANALYSIS, MANAGEMENT AND SECURITY (SNAMS), 2019, : 328 - 332
  • [10] Machine-Learning Models for Sales Time Series Forecasting
    Pavlyshenko, Bohdan M.
    DATA, 2019, 4 (01)