Graphene;
Fluoroelastomers;
Gas barrier;
Micromechanics;
Liquid barrier;
GAS BARRIER PROPERTIES;
STATISTICAL-MECHANICS;
ELASTOMER COMPOSITES;
REINFORCEMENT;
OXIDE;
DIFFUSION;
NANOPLATELETS;
CRYSTALLINITY;
GRAPHITE;
POLYMERS;
D O I:
10.1016/j.compscitech.2020.108592
中图分类号:
TB33 [复合材料];
学科分类号:
摘要:
High-performance sealing materials that can guard key components against high pressure gases and liquid chemicals while withstanding mechanical deformation are of utmost importance in a number of industries. In this present work, graphene nanoplatelets (GNPs) were introduced into a fluoroelastomer (FKM) matrix to improve its mechanical and barrier properties and test its suitability for sealing applications. Nanocomposites filled with different loadings of GNPs were prepared and compared with their counterparts loaded with carbon black (CB). GNPs were dispersed homogeneously with a high degree of in-plane alignment. The tensile and barrier properties of the FKM were improved significantly by the addition of GNPs. Micromechanical modelling based on the shear-lag/rule-of-mixtures theory was used to analyse the reinforcing efficiency of the GNPs. Upon the addition of the GNPs, the elastomer was able to swell anisotropically in liquids, a fact that can be used to tune the swelling properties for sealing applications. In terms of gas permeability, a modification of the well-established Nielsen's theory was introduced to analyse the CO2 permeability for the bulk composite samples. The significantly improved mechanical, thermal and barrier properties at relatively low filler loadings, reveal that the FKM/GNP nanocomposites produced are very promising for use in advanced sealing applications.
机构:
Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
Gao, Feidan
Zeng, Dawen
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
Huazhong Univ Sci & Technol, Dept Mat Sci & Engn, Nanomat & Smart Sensors Res Lab, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
Zeng, Dawen
Huang, Qingwu
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Dept Mat Sci & Engn, Nanomat & Smart Sensors Res Lab, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
Huang, Qingwu
Tian, Shouqin
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Dept Mat Sci & Engn, Nanomat & Smart Sensors Res Lab, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
Tian, Shouqin
Xie, Changsheng
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
Huazhong Univ Sci & Technol, Dept Mat Sci & Engn, Nanomat & Smart Sensors Res Lab, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China