PMSE performance of the biased estimators in a linear regression model when relevant regressors are omitted

被引:14
|
作者
Namba, A [1 ]
机构
[1] Kobe Univ, Grad Sch Econ, Nada Ku, Kobe, Hyogo 6578501, Japan
关键词
D O I
10.1017/S0266466602185033
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we consider a linear regression model when relevant regressors are omitted. We derive the explicit formulae for the predictive mean squared errors (PMSEs) of the Stein-rule (SR) estimator, the positive-part Stein-rule (PSR) estimator, the minimum mean squared error (MMSE) estimator, and the adjusted minimum mean squared error (AMMSE) estimator. It is shown analytically that the PSR estimator dominates the SR estimator in terms of PMSE even when there are omitted relevant regressors. Also, our numerical results show that the PSR estimator and the AMMSE estimator have much smaller PMSEs than the ordinary least squares estimator even when the relevant regressors are omitted.
引用
收藏
页码:1086 / 1098
页数:13
相关论文
共 50 条