In this work, we demonstrated the efficacy and feasibility of utilizing terbium and gadolinium complexes with low-lying energy levels to sensitize red-emitting iridium complexes in organic light-emitting diodes (OLEDs). Compared with devices without the introduction of a sensitizer, the obtained sensitized devices showed remarkably enhanced electroluminescence performances, which can be attributed to improved carrier balance as well as a wider recombination zone. Moreover, characteristic sensitizer emission was invisible in all sensitized devices due to the inferior hole trapping ability of sensitizer molecules. Finally, the sensitized device co-doped with 0.4 wt% of the terbium complex realized superior electroluminescence performances with maximum brightness, current efficiency, power efficiency and external quantum efficiency as high as 145 071 cd m(-2), 64.87 cd A(-1), 69.11 lm W-1 and 24.7%, respectively. Meanwhile, even at the practical brightness of 1000 cd m(-2) (4.0 V), outstanding external quantum efficiency and current efficiency up to 22.7% and 59.7 cd A(-1), respectively, were obtained.