A note on "Fuzzy Hungarian MODI algorithm to solve fully fuzzy transportation problems"

被引:2
|
作者
Mishra, Akansha [1 ]
Kumar, Amit [2 ]
Khan, Meraj Ali [2 ]
机构
[1] Thapar Inst Engn & Technol, Sch Math, Patiala, Punjab, India
[2] Univ Tabuk, Dept Math, Tabuk, Saudi Arabia
关键词
Fuzzy number; triangular fuzzy number; trapezoidal fuzzy number; fuzzy arithmetic operations; fuzzy transportation problem; fuzzy optimal solution; EXTENSION PRINCIPLE;
D O I
10.3233/JIFS-162234
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dhanasekar et al. (International Journal of Fuzzy Systems 19 (2017) 1479-1491) proposed a fuzzy Hungarian MODI algorithm to solve fully fuzzy transportation problems. Dhanasekar et al. have used the standard multiplication of trapezoidal fuzzy numbers in their proposed method. In this paper, it is pointed out that the method, proposed by Dhanasekar et al., is not valid for standard multiplication of trapezoidal fuzzy numbers and is valid only if a special type of multiplication of fuzzy numbers is used.
引用
收藏
页码:659 / 662
页数:4
相关论文
共 50 条
  • [1] Fuzzy Hungarian MODI Algorithm to Solve Fully Fuzzy Transportation Problems
    S. Dhanasekar
    S. Hariharan
    P. Sekar
    International Journal of Fuzzy Systems, 2017, 19 : 1479 - 1491
  • [2] Fuzzy Hungarian MODI Algorithm to Solve Fully Fuzzy Transportation Problems
    Dhanasekar, S.
    Hariharan, S.
    Sekar, P.
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2017, 19 (05) : 1479 - 1491
  • [3] Fuzzy zero suffix algorithm to solve fully fuzzy transportation problems by using element-wise operations
    Dhanasekar, S. (dhanasekar.sundaram@vit.ac.in), 1600, Forum-Editrice Universitaria Udinese SRL (43):
  • [4] Fuzzy zero suffix algorithm to solve fully fuzzy transportation problems by using element-wise operations
    Dhanasekar, S.
    Hariharan, S.
    Gururaj, David Maxim
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (43): : 256 - 267
  • [5] A note on "A new algorithm to solve fully fuzzy linear programming problems using the MOLP problem"
    Bhardwaj, Bindu
    Kumar, Amit
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (19) : 5982 - 5985
  • [6] Retraction Note: An algorithmic approach to solve unbalanced triangular fuzzy transportation problems
    S. Muthuperumal
    P. Titus
    M. Venkatachalapathy
    Soft Computing, 2024, 28 (Suppl 2) : 857 - 857
  • [7] A method to solve Pythagorean fuzzy transportation problems
    Bhatia, Tanveen Kaur
    Kumar, Amit
    Appadoo, S. S.
    Sharma, M. K.
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2023, 14 (05) : 1847 - 1854
  • [8] A method to solve Pythagorean fuzzy transportation problems
    Tanveen Kaur Bhatia
    Amit Kumar
    S. S. Appadoo
    M. K. Sharma
    International Journal of System Assurance Engineering and Management, 2023, 14 : 1847 - 1854
  • [9] Interval Valued Intuitionistic Fuzzy Diagonal Optimal Algorithm to Solve Transportation Problems
    Rani, J. Jansi
    Manivannan, A.
    Dhanasekar, S.
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2023, 25 (04) : 1465 - 1479
  • [10] Interval Valued Intuitionistic Fuzzy Diagonal Optimal Algorithm to Solve Transportation Problems
    J. Jansi Rani
    A. Manivannan
    S. Dhanasekar
    International Journal of Fuzzy Systems, 2023, 25 : 1465 - 1479