Determination of the atmospheric point spread function by a parameter search

被引:5
|
作者
Krishnakumar, V
Venkatakrishnan, P
机构
[1] Indian Institute of Astrophysics
来源
关键词
techniques; image processing; atmospheric effects; globular clusters; NGC; 1409;
D O I
10.1051/aas:1997259
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The result of blind deconvolution is a reconstructed image that has non positive intensities. The number of these non positive pixels has been used as an estimator for the departure from a perfect reconstruction. Simulations of reconstruction of objects convolved with a kernel having one or two parameters are shown to demonstrate the efficiency of the estimator. We thus present a technique of determining the unknown parameters of the point spread function by searching for the point in parameter space with the lowest number of nonpositive pixels. It is also shown that the parameters of the convolving kernel can be obtained even in the presence of noise. This method was validated using a long exposure image of NGC 1409.
引用
下载
收藏
页码:177 / 181
页数:5
相关论文
共 50 条
  • [1] Determination of the atmospheric point spread function by a parameter search (vol 126, pg 177, 1997)
    Krishnakumar, V
    Venkatakrishnan, P
    ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1998, 131 (01): : 195 - 195
  • [2] Exploring the Parameter Space of Point Spread Function Determination for the Scanning Electron Microscope-Part I: Effect on the Point Spread Function
    Nevins, Mandy C.
    Quoi, Kathryn
    Hailstone, Richard K.
    Lifshin, Eric
    MICROSCOPY AND MICROANALYSIS, 2019, 25 (05) : 1167 - 1182
  • [3] Point spread function deconvolution of an Atmospheric Cherenkov Telescope
    Kenny, G. E.
    Gillanders, G. H.
    Lang, M. J.
    Proceedings of the 29th International Cosmic Ray Conference, Vol 5: OG 2.5, 2.6 & 2.7, 2005, : 279 - 282
  • [4] Parameter identification of point spread function in noisy and blur images
    Xu, Yuan-Nan
    Zhao, Yuan
    Liu, Li-Ping
    Sun, Xiu-Dong
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2009, 17 (11): : 2849 - 2856
  • [5] EXPERIMENTAL-DETERMINATION OF CT POINT SPREAD FUNCTION
    DORE, S
    KEARNEY, RE
    DEGUISE, J
    IMAGES OF THE TWENTY-FIRST CENTURY, PTS 1-6, 1989, 11 : 620 - 621
  • [6] Point Spread Function Determination for Keck Adaptive Optics
    Ragland, S.
    Jolissaint, L.
    Wizinowich, P.
    van Dam, M. A.
    Mugnier, L.
    Bouxin, A.
    Chock, J.
    Kwok, S.
    Mader, J.
    Witzel, G.
    Do, Tuan
    Fitzgerald, M.
    Ghez, A.
    Lu, J.
    Martinez, G.
    Morris, M. R.
    Sitarski, B.
    ADAPTIVE OPTICS SYSTEMS V, 2016, 9909
  • [7] Estimation of the atmospheric point spread function using the neural network approach
    Cong, B
    INTERNATIONAL SOCIETY FOR COMPUTERS AND THEIR APPLICATIONS 10TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED COMPUTING SYSTEMS, 1997, : 589 - 592
  • [8] Development of a robust structure for atmospheric point spread function model with PVM
    Shin, SY
    Shim, CY
    Lee, DC
    10TH INTERNATIONAL CONFERENCE ON COMPUTER APPLICATIONS IN INDUSTRY AND ENGINEERING, 1997, : 36 - 39
  • [9] A Backscatter Point Spread Function for Entrance Skin Dose Determination
    Vijayan, S.
    Xiong, Z.
    Shankar, A.
    Rudin, S.
    Bednarek, D.
    MEDICAL PHYSICS, 2016, 43 (06) : 3748 - 3749
  • [10] Status of Point Spread Function Determination for Keck Adaptive Optics
    Ragland, S.
    Dupuy, T. J.
    Jolissaint, L.
    Wizinowich, P. L.
    Lu, J. R.
    van Dam, M. A.
    Berriman, G. B.
    Best, W.
    Gelino, C. R.
    Ghez, M.
    Liu, M. C.
    Mader, J. A.
    Vayner, A.
    Witzel, G.
    Wright, S. A.
    ADAPTIVE OPTICS SYSTEMS VI, 2018, 10703