Radio Modulation Classification Using Deep Residual Neural Networks

被引:2
|
作者
Abbas, Adeeb [1 ]
Pano, Vasil [1 ]
Mainland, Geoffrey [2 ]
Dandekar, Kapil [1 ]
机构
[1] Drexel Univ, Elect & Comp Engn, Philadelphia, PA 19104 USA
[2] Drexel Univ, Coll Comp & Informat, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
machine learning; convolution networks; deep learning; modulation recognition; radio frequency; RECOGNITION;
D O I
10.1109/MILCOM55135.2022.10017640
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new deep residual network for Automatic Modulation Classification, OPResNet-18. It achieves state-of-the-art accuracy on the RadioML 2016.10a data set. We train the proposed model and other state-of-the-art networks with augmented data by adding a Carrier Frequency Offset (CFO). We find that the previously proposed IQNet-3 is robust to CFO. We demonstrate that this robustness allows the performance of IQNet-3 to be further improved through data augmentation in contrast to existing neural networks that cannot handle CFO. Finally, we provide evidence that standard data pre-processing techniques for time-domain data that reportedly perform well in many domains do not perform as well as a simple alternative, the outer product, in the IQ domain.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] ARRHYTHMIA CLASSIFICATION USING DEEP RESIDUAL NEURAL NETWORKS
    Shi, Zhenghao
    Yin, Zhiyan
    Ren, Xiaoyong
    Liu, Haiqin
    Chen, Jingguo
    Hei, Xinhong
    Luo, Jing
    You, Zhenzhen
    Zhao, Minghua
    [J]. JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2021, 21 (10)
  • [2] FULLY AUTOMATED CLASSIFICATION OF MAMMOGRAMS USING DEEP RESIDUAL NEURAL NETWORKS
    Dhungel, Neeraj
    Carneiro, Gustavo
    Bradley, Andrew P.
    [J]. 2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 310 - 314
  • [3] Automatic Concurrent Arrhythmia Classification Using Deep Residual Neural Networks
    Nankani, Deepankar
    Saikia, Pallabi
    Baruah, Rashmi Dutta
    [J]. 2020 COMPUTING IN CARDIOLOGY, 2020,
  • [4] Automatic Modulation Classification with Deep Neural Networks
    Harper, Clayton A.
    Thornton, Mitchell A.
    Larson, Eric C.
    [J]. ELECTRONICS, 2023, 12 (18)
  • [5] Pattern Recognition of Modulation Signal Classification Using Deep Neural Networks
    Venugopal, D.
    Mohan, V
    Ramesh, S.
    Janupriya, S.
    Lim, Sangsoon
    Kadry, Seifedine
    [J]. COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 43 (02): : 545 - 558
  • [6] SlumberNet: deep learning classification of sleep stages using residual neural networks
    Pawan K. Jha
    Utham K. Valekunja
    Akhilesh B. Reddy
    [J]. Scientific Reports, 14
  • [7] SlumberNet: deep learning classification of sleep stages using residual neural networks
    Jha, Pawan K.
    Valekunja, Utham K.
    Reddy, Akhilesh B.
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01)
  • [8] Deep Sparse Learning for Automatic Modulation Classification Using Recurrent Neural Networks
    Zang, Ke
    Wu, Wenqi
    Luo, Wei
    [J]. SENSORS, 2021, 21 (19)
  • [9] Radio Modulation Classification Using Deep Learning Architectures
    Pijackova, Kristyna
    Gotthans, Tomas
    [J]. 2021 31ST INTERNATIONAL CONFERENCE RADIOELEKTRONIKA (RADIOELEKTRONIKA), 2021,
  • [10] Segmentation-Free Cell Phenotype Classification using Deep Residual Neural Networks
    Lao, Qicheng
    Sun, Haoran
    Fevens, Thomas
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (ICPRAI 2018), 2018, : 72 - 77