Quantitative Heegaard Floer cohomology and the Calabi invariant

被引:6
|
作者
Cristofaro-Gardiner, Daniel [1 ]
Humiliere, Vincent [2 ,3 ,4 ]
Mak, Cheuk Yu [5 ]
Seyfaddini, Sobhan [2 ,3 ,4 ]
Smith, Ivan [6 ]
机构
[1] Univ Maryland, Dept Math, 4176 Campus Dr, College Pk, MD 20742 USA
[2] Sorbonne Univ, F-75006 Paris, France
[3] Univ Paris Cite, CNRS, IMJ PRG, F-75006 Paris, France
[4] Inst Univ France, Paris, France
[5] Univ Southampton, Sch Mathemat Sci, Southampton SO17 1BJ, Hants, England
[6] Univ Cambridge, Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WB, England
来源
FORUM OF MATHEMATICS PI | 2022年 / 10卷
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
53D40; 37E30; HAMILTONIAN HOMEOMORPHISMS; SYMPLECTIC TOPOLOGY; SPECTRAL INVARIANTS; HOLOMORPHIC DISKS; GEOMETRY; DIFFEOMORPHISMS; PRODUCTS;
D O I
10.1017/fmp.2022.18
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a new family of spectral invariants associated to certain Lagrangian links in compact and connected surfaces of any genus. We show that our invariants recover the Calabi invariant of Hamiltonians in their limit. As applications, we resolve several open questions from topological surface dynamics and continuous symplectic topology: We show that the group of Hamiltonian homeomorphisms of any compact surface with (possibly empty) boundary is not simple; we extend the Calabi homomorphism to the group of hameomorphisms constructed by Oh and Muller, and we construct an infinite-dimensional family of quasi-morphisms on the group of area and orientation preserving homeomorphisms of the two-sphere.Our invariants are inspired by recent work of Polterovich and Shelukhin defining and applying spectral invariants, via orbifold Floer homology, for links composed of parallel circles in the two-sphere. A particular feature of our work is that it avoids the orbifold setting and relies instead on 'classical' Floer homology. This not only substantially simplifies the technical background but seems essential for some aspects (such as the application to constructing quasi-morphisms).
引用
收藏
页数:59
相关论文
共 50 条
  • [1] Filtering the Heegaard Floer contact invariant
    Kutluhan, Cagatay
    Mati, Gordana
    Van Horn-Morris, Jeremy
    Wand, Andy
    GEOMETRY & TOPOLOGY, 2023, 27 (06) : 2181 - 2236
  • [2] A combinatorial description of the Heegaard Floer contact invariant
    Plamenevskaya, Olga
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2007, 7 : 1201 - 1209
  • [3] On the infinity flavor of Heegaard Floer homology and the integral cohomology ring
    Lidman, Tye
    COMMENTARII MATHEMATICI HELVETICI, 2013, 88 (04) : 875 - 898
  • [4] Bordered Heegaard Floer homology and the tau-invariant of cable knots
    Hom, Jennifer
    JOURNAL OF TOPOLOGY, 2014, 7 (02) : 287 - 326
  • [5] Surgery on links of linking number zero and the Heegaard Floer d-invariant
    Gorsky, Eugene
    Liu, Beibei
    Moore, Allison H.
    QUANTUM TOPOLOGY, 2020, 11 (02) : 323 - 378
  • [6] INVOLUTIVE HEEGAARD FLOER HOMOLOGY
    Hendricks, Kristen
    Manolescu, Ciprian
    DUKE MATHEMATICAL JOURNAL, 2017, 166 (07) : 1211 - 1299
  • [7] Combinatorial Heegaard Floer homology and nice Heegaard diagrams
    Ozsvath, Peter
    Stipsicz, Andras I.
    Szabo, Zoltan
    ADVANCES IN MATHEMATICS, 2012, 231 (01) : 102 - 171
  • [8] Cornered Heegaard Floer Homology
    Douglas, Christopher L.
    Lipshitz, Robert
    Manolescu, Ciprian
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 262 (1266) : 1 - +
  • [9] Introduction to Heegaard Floer homology
    Gorsky, E. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2019, 74 (01) : 1 - 35
  • [10] Bordered Heegaard Floer Homology
    Lipshitz, Robert
    Ozsvath, Peter S.
    Thurston, Dylan P.
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 255 (1216) : 1 - +