SnO2 nanowire gas sensors for detection of ppb level NOx gas

被引:10
|
作者
Kim, Hyun Ji [1 ]
Jo, Seong Bin [2 ]
Ahn, Joong Hee [3 ]
Hwang, Byung Wook [4 ]
Chae, Ho Jin [2 ]
Kim, Seong Yeol [1 ]
Huh, Jeung Soo [5 ]
Ragupathy, Dhanusuraman [6 ]
Lee, Soo Chool [2 ]
Kim, Jae Chang [1 ]
机构
[1] Kyungpook Natl Univ, Dept Chem Engn, Daegu 41566, South Korea
[2] Kyungpook Natl Univ, Res Inst Adv Energy Technol, Daegu 41566, South Korea
[3] Greenpia Technol Ltd, Seoul 06258, South Korea
[4] Korea Inst Energy Res, Daejeon 34129, South Korea
[5] Kyungpook Natl Univ, Dept Mat Sci & Met, Daegu 41566, South Korea
[6] Natl Inst Technol Puducherry, Dept Chem, Karaikal 609609, India
关键词
Sensor; Nanowire; SnO2; NO2; Thermal evaporation; SENSING CHARACTERISTICS; METAL-OXIDES; NANOSTRUCTURES; NANOCRYSTALS;
D O I
10.1007/s10450-019-00105-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Until now, SnO2 nanowires have been directly grown on alumina substrates with Au or Au-coated Pt electrodes by a thermal evaporation method using Sn or SnO2 powders under vacuum. However, in this study, SnO2 nanowires were successfully synthesized on the Pt phase of an alumina substrate by a thermal evaporation method using dibutyltin oxide [DBTO, (C4H9)(2)SnO] even at atmospheric pressure, resulting in nanowire networks between the Pt phases. Ar with 1% O-2 was used as carrier gas with a flow rate of 100 mL/min at 900 degrees C (heating rate of 25 degrees C/min). The SnO2 nanowires consisted of straight and branched nanowires, and exhibited a SnO2 phase with a tetragonal structure. Both the DBTO and evaporation temperature play an important role on the synthesis of SnO2 nanowires at atmospheric pressure. The SnO2 nanowire sensor fabricated by an evaporation method showed a sensor response of similar to 500 for 0.05 ppm of NO2, being similar to 10 times greater than that of a SnO2 nanoparticle sensor. Furthermore, the SnO2 nanowire sensor showed excellent repeatability and selectivity for NO2 in the presence of SO2, Cl-2, and H2S.
引用
收藏
页码:1259 / 1269
页数:11
相关论文
共 50 条
  • [1] SnO2 nanowire gas sensors for detection of ppb level NOx gas
    Hyun Ji Kim
    Seong Bin Jo
    Joong Hee Ahn
    Byung Wook Hwang
    Ho Jin Chae
    Seong Yeol Kim
    Jeung Soo Huh
    Dhanusuraman Ragupathy
    Soo Chool Lee
    Jae Chang Kim
    Adsorption, 2019, 25 : 1259 - 1269
  • [2] Highly sensitive SnO2 nanowire network gas sensors
    Domenech-Gil, Guillem
    Sama, Jordi
    Fabrega, Cristian
    Gracia, Isabel
    Cane, Carles
    Barth, Sven
    Romano-Rodriguez, Albert
    SENSORS AND ACTUATORS B-CHEMICAL, 2023, 383
  • [3] Response modeling of single SnO2 nanowire gas sensors
    Asadzadeh, Mohammad Zhian
    Kock, Anton
    Popov, Maxim
    Steinhauer, Stephan
    Spitaler, Juergen
    Romaner, Lorenz
    SENSORS AND ACTUATORS B-CHEMICAL, 2019, 295 : 22 - 29
  • [4] Comparison of the gas sensing performance of SnO2 thin film and SnO2 nanowire sensors
    Brunet, E.
    Maier, T.
    Mutinati, G. C.
    Steinhauer, S.
    Koeck, A.
    Gspan, C.
    Grogger, W.
    SENSORS AND ACTUATORS B-CHEMICAL, 2012, 165 (01) : 110 - 118
  • [5] SnO2 Nanowire/MoS2 Nanosheet Composite Gas Sensor in Self-Heating Mode for Selective and ppb-Level Detection of NO2 Gas
    Kim, Jin-Young
    Mirzaei, Ali
    Kim, Jae-Hun
    CHEMOSENSORS, 2024, 12 (06)
  • [6] Nano SnO2 Gas Sensors
    Wu, Qi-Hui
    Li, Jing
    Sun, Shi-Gang
    CURRENT NANOSCIENCE, 2010, 6 (05) : 525 - 538
  • [7] RESISTIVITY OF SNO2 GAS SENSORS
    WAKO, H
    DENKI KAGAKU, 1980, 48 (05): : 284 - 289
  • [8] Gas detection with SnO2 sensors modified by zeolite films
    Vilaseca, Montserrat
    Coronas, Joaquin
    Cirera, Albert
    Cornet, Albert
    Ramon Morante, Joan
    Santamaria, Jesus
    SENSORS AND ACTUATORS B-CHEMICAL, 2007, 124 (01) : 99 - 110
  • [9] SENSING MECHANISM OF SNO2 GAS SENSORS
    IPPOMMATSU, M
    SASAKI, H
    YANAGIDA, H
    JOURNAL OF MATERIALS SCIENCE, 1990, 25 (1A) : 259 - 262
  • [10] STABILIZATION OF SNO2 SINTERED GAS SENSORS
    MATSUURA, Y
    TAKAHATA, K
    SENSORS AND ACTUATORS B-CHEMICAL, 1991, 5 (1-4) : 205 - 209