Scene-specific convolutional neural networks for video-based biodiversity detection

被引:32
|
作者
Weinstein, Ben G. [1 ]
机构
[1] Oregon State Univ, Marine Mammal Inst, Dept Fisheries & Wildlife, Newport, OR 97365 USA
来源
METHODS IN ECOLOGY AND EVOLUTION | 2018年 / 9卷 / 06期
关键词
automated monitoring; computer vision; hummingbirds; neural networks; remote cameras;
D O I
10.1111/2041-210X.13011
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
1. Finding, counting and identifying animals is a central challenge in ecology. Most studies are limited by the time and cost of fieldwork by human observers. To increase the spatial and temporal breadth of sampling, ecologists are adopting passive image-based monitoring approaches. While passive monitoring can expand data collection, a remaining obstacle is finding the small proportion of images containing ecological objects among the majority of frames containing only background scenes. 2. I proposed a scene-specific convolutional neural network for detecting animals of interest within long duration time-lapse videos. Convolutional neural networks are a type of deep learning algorithm that have recently made significant advances in image classification. 3. The approach was tested on videos of floral visitation by hummingbirds. Despite low frame rates, poor image quality, and complex video conditions, the model correctly classified over 90% of frames containing hummingbirds. Combining motion detection and image classification can substantially reduce the time investment in scoring images from passive monitoring studies. 4. These results underscore the promise of deep learning to lead ecology into greater automation using passive image analysis. To help facilitate future applications, I created a desktop executable that can be used to apply pre-trained models to videos, as well as reproducible scripts for training new models on local and cloud environments.
引用
收藏
页码:1435 / 1441
页数:7
相关论文
共 50 条
  • [1] Adaptive Deep Convolutional Neural Networks for Scene-Specific Object Detection
    Li, Xudong
    Ye, Mao
    Liu, Yiguang
    Zhu, Ce
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (09) : 2538 - 2551
  • [2] Deep Background Subtraction with Scene-Specific Convolutional Neural Networks
    Braham, Marc
    Van Droogenbroeck, Marc
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, (IWSSIP 2016), 2016, : 113 - 116
  • [3] Multiscale Cascaded Scene-Specific Convolutional Neural Networks for Background Subtraction
    Liao, Jian
    Guo, Guanjun
    Yan, Yan
    Wang, Hanzi
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT I, 2018, 11164 : 524 - 533
  • [4] Video-Based Fire Detection with Saliency Detection and Convolutional Neural Networks
    Shi, Lifeng
    Long, Fei
    Lin, ChenHan
    Zhao, Yihan
    ADVANCES IN NEURAL NETWORKS, PT II, 2017, 10262 : 299 - 309
  • [5] Scene-Specific Pedestrian Detection for Static Video Surveillance
    Wang, Xiaogang
    Wang, Meng
    Li, Wei
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (02) : 361 - 374
  • [6] Scene-specific pedestrian detection based on transfer learning and saliency detection for video surveillance
    Xing W.
    Bai P.
    Zhang S.
    Bao P.
    Automatic Control and Computer Sciences, 2017, 51 (3) : 180 - 192
  • [7] Video-Based Convolutional Neural Networks Forecasting for Rainfall Forecasting
    Barnes, Andrew P.
    Kjeldsen, Thomas R.
    McCullen, Nick
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [8] Video-based face recognition via convolutional neural networks
    Bao, Tianlong
    Ding, Chunhui
    Karmoshi, Saleem
    Zhu, Ming
    SECOND INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION, 2017, 10443
  • [9] Depth Video-based Two-stream Convolutional Neural Networks for Driver Fatigue Detection
    Ma, Xiaoxi
    Chau, Lap-Pui
    Yap, Kim-Hui
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON ORANGE TECHNOLOGIES (ICOT), 2017, : 155 - 158
  • [10] Unconstrained Still/Video-Based Face Verification with Deep Convolutional Neural Networks
    Chen, Jun-Cheng
    Ranjan, Rajeev
    Sankaranarayanan, Swami
    Kumar, Amit
    Chen, Ching-Hui
    Patel, Vishal M.
    Castillo, Carlos D.
    Chellappa, Rama
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2018, 126 (2-4) : 272 - 291