Transgene Expression and Host Cell Responses to Replication-Defective, Single-Cycle, and Replication-Competent Adenovirus Vectors

被引:16
|
作者
Crosby, Catherine M. [1 ,2 ]
Barry, Michael A. [3 ,4 ,5 ]
机构
[1] Mayo Grad Sch, Virol & Gene Therapy Grad Program, Rochester, MN 55905 USA
[2] La Jolla Inst Allergy & Immunol, La Jolla, CA 92037 USA
[3] Mayo Clin, Dept Med, Div Infect Dis, Rochester, MN 55905 USA
[4] Mayo Clin, Dept Immunol, Rochester, MN 55905 USA
[5] Mayo Clin, Dept Mol Med, Rochester, MN 55905 USA
来源
GENES | 2017年 / 8卷 / 02期
关键词
adenovirus; replication-competent; replication-defective; vaccines; cancer therapy; genome replication; animal models; IMMUNE-RESPONSES; MACROPHAGES; PHARMACOLOGY; ACTIVATION; VACCINES; THERAPY;
D O I
10.3390/genes8020079
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Most adenovirus (Ad) vectors are E1 gene deleted replication defective (RD-Ad) vectors that deliver one transgene to the cell and all expression is based on that one gene. In contrast, E1-intact replication-competent Ad (RC-Ad) vectors replicate their DNA and their transgenes up to 10,000-fold, amplifying transgene expression markedly higher than RD-Ad vectors. While RC-Ad are more potent, they run the real risk of causing adenovirus infections in vector recipients and those that administer them. To gain the benefits of transgene amplification, but avoid the risk of Ad infections, we developed single cycle Ad (SC-Ad) vectors. SC-Ads amplify transgene expression and generated markedly stronger and more persistent immune responses than RD-Ad as expected. However, they also unexpectedly generated stronger immune responses than RC-Ad vectors. To explore the basis of this potency here, we compared gene expression and the cellular responses to infection to these vectors in vitro and in vivo. In vitro, in primary human lung epithelial cells, SC- and RC-Ad amplified their genomes more than 400-fold relative to RD-Ad with higher replication by SC-Ad. This replication translated into higher green fluorescent protein (GFP) expression for 48 h by SC- and RC-Ad than by RD-Ad. In vitro, in the absence of an immune system, RD-Ad expression became higher by 72 h coincident with cell death mediated by SC- and RC-Ad and release of transgene product from the dying cells. When the vectors were compared in human THP-1 Lucia- interferon-stimulated gene (ISG) cells, which are a human monocyte cell line that have been modified to quantify ISG activity, RC-Ad6 provoked significantly stronger ISG responses than RD- or SC-Ad. In mice, intravenous or intranasal injection produced up to 100-fold genome replication. Under these in vivo conditions in the presence of the immune system, luciferase expression by RC and SC-Ad was markedly higher than that by RD-Ad. In immunodeficient mice, SC-Ad drove stronger luciferase expression than RC- or RD-Ad. These data demonstrate better transgene expression by SC- and RC-Ad in vitro and in vivo than RD-Ad. This higher expression by the replicating vectors results in a peak of expression within 1 to 2 days followed by cell death of infected cells and release of transgene products. While SC- and RC-Ad expression were similar in mice and in Syrian hamsters, RC-Ad provoked much stronger ISG induction which may explain in part SC-Ads ability to generate stronger and more persistent immune responses than RC-Ad in Ad permissive hamsters.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Switching a Replication-Defective Adenoviral Vector into a Replication-Competent, Oncolytic Adenovirus
    Nakashima, Hiroshi
    Chiocca, E. Antonio
    [J]. JOURNAL OF VIROLOGY, 2014, 88 (01) : 345 - 353
  • [2] Differential Activation of Cellular DNA Damage Responses by Replication-Defective and Replication-Competent Adenovirus Mutants
    Prakash, Anand
    Jayaram, Sumithra
    Bridge, Eileen
    [J]. JOURNAL OF VIROLOGY, 2012, 86 (24) : 13324 - 13333
  • [3] Adenovirus replication-competent vectors (KD1, KD3) complement the cytotoxicity and transgene expression from replication-defective vectors (Ad-GFP, Ad-Luc)
    Habib, NA
    Mitry, R
    Seth, P
    Kuppuswamy, M
    Doronin, K
    Toth, K
    Krajcsi, P
    Tollefson, AE
    Wold, WSM
    [J]. CANCER GENE THERAPY, 2002, 9 (08) : 651 - 654
  • [5] Development of replication-competent adenovirus based vaccine vectors
    P Abbink
    LF Maxfield
    DH Barouch
    [J]. Retrovirology, 9
  • [6] Development of replication-competent adenovirus based vaccine vectors
    Abbink, P.
    Maxfield, L. F.
    Barouch, D. H.
    [J]. RETROVIROLOGY, 2012, 9
  • [7] Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors
    Tripathy, SK
    Black, HB
    Goldwasser, E
    Leiden, JM
    [J]. NATURE MEDICINE, 1996, 2 (05) : 545 - 550
  • [8] Adenovirus replication–competent vectors (KD1, KD3) complement the cytotoxicity and transgene expression from replication-defective vectors (Ad-GFP, Ad-Luc)
    Nagy A Habib
    Ragai Mitry
    Prem Seth
    Mohan Kuppuswamy
    Konstantin Doronin
    Karoly Toth
    Peter Krajcsi
    Ann E Tollefson
    William S M Wold
    [J]. Cancer Gene Therapy, 2002, 9 : 651 - 654
  • [9] New vectors mediate controlled in situ replication of E1-defective adenovirus without production replication-competent adenovirus.
    Dion, LD
    Goldsmith, KT
    Garver, RI
    [J]. CANCER GENE THERAPY, 1996, 3 (06) : P51 - P51
  • [10] REPLICATION-COMPETENT AND-DEFECTIVE RETROVIRUS VECTORS FOR ONCOGENIC STUDIES
    SAMARUT, J
    FLAMANT, F
    HEARD, JM
    [J]. ONCOGENE TECHNIQUES, 1995, 254 : 206 - 228