Scalar field correlator in de Sitter space at next-to-leading order in a 1/N expansion

被引:42
|
作者
Gautier, F. [1 ]
Serreau, J. [2 ]
机构
[1] Tech Univ Munich, Phys Dept T70, D-85748 Garching, Germany
[2] Univ Paris Diderot, Sorbonne Paris Cite, AstroParticule & Cosmol, CNRS IN2P3,CEA Irfu,Observ Paris,APC, F-75205 Paris 13, France
来源
PHYSICAL REVIEW D | 2015年 / 92卷 / 10期
关键词
ONE-LOOP CORRECTIONS; DYNAMICS; RENORMALIZATION; RESTORATION; INFLATION;
D O I
10.1103/PhysRevD.92.105035
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the dynamics of light quantum scalar fields in de Sitter space on superhorizon scales. We compute the self-energy of an O(N) symmetric theory at next-to-leading order in a 1/N expansion in the regime of superhorizon momenta, and we obtain an exact analytical solution of the corresponding DysonSchwinger equations for the two-point correlator. This amounts to resumming the infinite series of nonlocal self-energy insertions, which typically generate spurious infrared and/or secular divergences. The potentially large de Sitter logarithms resum into well-behaved power laws from which we extract the field strength and mass renormalization. The nonperturbative 1/N expansion allows us to discuss the case of vanishing and negative tree-level square mass, which both correspond to strongly coupled effective theories in the infrared.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] QCD field strength correlator at the next-to-leading order
    Eidemuller, M
    Jamin, M
    PHYSICS LETTERS B, 1998, 416 (3-4) : 415 - 420
  • [2] QCD field strength correlator at the next-to-leading order
    Eidemuller, M.
    Jamin, M.
    Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics, 416 (03):
  • [3] Next-to-leading order effective field theory ΛN → NN potential in coordinate space
    Perez-Obiol, A.
    Entem, D. R.
    Julia-Diaz, B.
    Parreno, A.
    NUCLEAR PHYSICS A, 2016, 954 : 213 - 241
  • [4] Renormalized effective actions for the O(N) model at next-to-leading order of the 1/N expansion
    Fejos, G.
    Patkos, A.
    Szep, Zs.
    PHYSICAL REVIEW D, 2009, 80 (02):
  • [5] Linear sigma model at finite density in the 1/N expansion to next-to-leading order
    Andersen, Jens O.
    Brauner, Tomas
    PHYSICAL REVIEW D, 2008, 78 (01):
  • [6] Next-to-leading order scalar contributions to μ → e conversion
    Cirigliano, Vincenzo
    Fuyuto, Kaori
    Ramsey-Musolf, Michael J.
    Rule, Evan
    PHYSICAL REVIEW C, 2022, 105 (05)
  • [7] Renormalized O(N) model at next-to-leading order of the 1/N expansion: Effects of the Landau pole
    Fejos, G.
    Patkos, A.
    Szep, Zs.
    PHYSICAL REVIEW D, 2014, 90 (01):
  • [8] The Gross-Neveu model at finite temperature at next-to-leading order in the 1/N expansion
    Blaizot, JP
    Galain, RM
    Wschebor, N
    ANNALS OF PHYSICS, 2003, 307 (02) : 209 - 271
  • [9] Thermal field theory at next-to-leading order in the hard thermal loop expansion
    Mirza, A.
    Carrington, M. E.
    PHYSICAL REVIEW D, 2013, 87 (06):
  • [10] A PRACTICAL GUIDE TO THE NEXT-TO-LEADING ORDER OF THE PERTURBATION EXPANSION
    NOWAK, MA
    PRASZALOWICZ, M
    SLOMINSKI, W
    ANNALS OF PHYSICS, 1986, 166 (02) : 443 - 488