A logical approach to context-specific independence

被引:13
|
作者
Corander, Jukka [1 ,3 ]
Hyttinen, Antti [2 ]
Kontinen, Juha [1 ]
Pensar, Johan [1 ,4 ]
Vaananen, Jouko [1 ,5 ]
机构
[1] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[2] Univ Helsinki, Dept Comp Sci, HIIT, Helsinki, Finland
[3] Univ Oslo, Dept Biostat, Oslo, Norway
[4] Abo Akad Univ, Dept Math & Stat, Turku, Finland
[5] Univ Amsterdam, Inst Log Language & Computat, Amsterdam, Netherlands
基金
芬兰科学院;
关键词
Directed acyclic graph; Graphical model; Context-specific independence; Implication problem; Team semantics; CONDITIONAL-INDEPENDENCE; DEPENDENCE; INCLUSION; AXIOMS;
D O I
10.1016/j.apal.2019.04.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Directed acyclic graphs (DAGs) constitute a qualitative representation for conditional independence (CI) properties of a probability distribution. It is known that every CI statement implied by the topology of a DAG is witnessed over it under a graph-theoretic criterion of d-separation. Alternatively, all such implied CI statements are derivable from the local independencies encoded by a DAG using the so-called semi-graphoid axioms. We consider Labeled Directed Acyclic Graphs (LDAGs) modeling graphically scenarios exhibiting context-specific independence (CSI). Such CSI statements are modeled by labeled edges, where labels encode contexts in which the edge vanishes. We study the problem of identifying all independence statements implied by the structure and the labels of an LDAG. We show that this problem is coNP-hard for LDAGs and formulate a sound extension of the semi-graphoid axioms for the derivation of such implied independencies. Finally we connect our study to certain qualitative versions of independence ubiquitous in database theory and teams semantics. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:975 / 992
页数:18
相关论文
共 50 条
  • [1] A Logical Approach to Context-Specific Independence
    Corander, Jukka
    Hyttinen, Antti
    Kontinen, Juha
    Pensar, Johan
    Vaananen, Jouko
    [J]. LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION, 2016, 9803 : 165 - 182
  • [2] Context-specific independence in Bayesian networks
    Boutilier, C
    Friedman, N
    Goldszmidt, M
    Koller, D
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 1996, : 115 - 123
  • [3] On the role of context-specific independence in probabilistic inference
    Zhang, NL
    Poole, D
    [J]. IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, 1999, : 1288 - 1293
  • [4] A New Perspective on Learning Context-Specific Independence
    Shen, Yujia
    Choi, Arthur
    Darwiche, Adnan
    [J]. INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 425 - 436
  • [5] Causal Imitability Under Context-Specific Independence Relations
    Jamshidi, Fateme
    Akbari, Sina
    Kiyavash, Negar
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [6] Causality, Simpson's paradox, and context-specific independence
    Sanscartier, MJ
    Neufeld, E
    [J]. SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2005, 3571 : 233 - 243
  • [7] Context-specific independence mixture modelling for protein families
    Georgi, Benjamin
    Schultz, Joerg
    Schliep, Alexander
    [J]. KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2007, PROCEEDINGS, 2007, 4702 : 79 - +
  • [8] ALIENATION AND AGE - CONTEXT-SPECIFIC APPROACH
    MARTIN, WC
    BENGTSON, VL
    ACOCK, AC
    [J]. SOCIAL FORCES, 1974, 53 (02) : 266 - 274
  • [9] Context-specific independence mixture modeling for positional weight matrices
    Georgi, Benjamin
    Schliep, Alexander
    [J]. BIOINFORMATICS, 2006, 22 (14) : E166 - E173
  • [10] Bayesian network learning with abstraction hierarchies and context-specific independence
    desJardins, M
    Rathod, P
    Getoor, L
    [J]. MACHINE LEARNING: ECML 2005, PROCEEDINGS, 2005, 3720 : 485 - 496