Two Optimum Secret Sharing Schemes Revisited

被引:1
|
作者
Cao, Zhengjun [1 ,2 ]
Markowitch, Olivier [1 ,2 ]
机构
[1] Univ Libre Bruxelles, Dept Comp Sci, Brussels, Belgium
[2] Shanghai Univ, Dept Math, Shanghai 200041, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/FITME.2008.95
中图分类号
F [经济];
学科分类号
02 ;
摘要
In 2006, Obana et al proposed two optimum secret sharing schemes secure against cheating. They extend the secret s in the Shamir's scheme to an array of three elements, (s, e(0), e(1)), and construct two equations for checking validity. Each item in the equations should be reconstructed using Lagrange's interpolation. In this paper we revisit these schemes by introducing a public hash function to construct equations for checking validity The revisited schemes become more efficient because they only extend the secret to an array of two elements. The new scheme for a single secret saves about 1/3 cost of the original.
引用
收藏
页码:157 / +
页数:2
相关论文
共 50 条
  • [1] Threshold changeable secret sharing schemes revisited
    Zhang, Zhifang
    Chee, Yeow Meng
    Ling, San
    Liu, Mulan
    Wang, Huaxiong
    THEORETICAL COMPUTER SCIENCE, 2012, 418 : 106 - 115
  • [2] Optimum Pixel Expansions for Threshold Visual Secret Sharing Schemes
    Shyu, Shyong Jian
    Chen, Ming Chiang
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2011, 6 (03) : 960 - 969
  • [3] Ways to merge two secret sharing schemes
    Slinko, Arkadii
    IET INFORMATION SECURITY, 2020, 14 (01) : 146 - 150
  • [4] Almost optimum secret sharing schemes secure against cheating for arbitrary secret distribution
    Obana, Satoshi
    Araki, Toshinori
    Advances in Cryptology - ASIACRYPT 2006, 2006, 4284 : 364 - 379
  • [5] Almost Optimum t-Cheater Identifiable Secret Sharing Schemes
    Obana, Satoshi
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2011, 2011, 6632 : 284 - 302
  • [6] On secret sharing schemes
    Blundo, C
    De Santis, A
    Vaccaro, U
    INFORMATION PROCESSING LETTERS, 1998, 65 (01) : 25 - 32
  • [7] Two Quantum Secret Sharing Schemes with Adversary Structure
    Wu, Tingting
    Zhu, Shixin
    Li, Fulin
    Liu, Li
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2022, 61 (07)
  • [8] Notes on two multiparty quantum secret sharing schemes
    Gao, Gan
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2018, 16 (03)
  • [9] Two secret sharing schemes based on Boolean operations
    Wang, Daoshun
    Zhang, Lei
    Ma, Ning
    Li, Xiaobo
    PATTERN RECOGNITION, 2007, 40 (10) : 2776 - 2785
  • [10] Two Quantum Secret Sharing Schemes with Adversary Structure
    Tingting Wu
    Shixin Zhu
    Fulin Li
    Li Liu
    International Journal of Theoretical Physics, 61