Spectral analysis of thermal boundary conductance across solid/classical liquid interfaces: A molecular dynamics study

被引:43
|
作者
Giri, Ashutosh [1 ]
Hopkins, Patrick E. [1 ]
机构
[1] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
关键词
HEAT-FLOW; RESISTANCE; WATER; TEMPERATURE; SURFACES; ENERGY; SLIP;
D O I
10.1063/1.4891332
中图分类号
O59 [应用物理学];
学科分类号
摘要
We investigate the fundamental mechanisms driving thermal transport across solid/classical-liquid interfaces via non-equilibrium molecular dynamics simulations. We show that the increase in thermal boundary conductance across strongly bonded solid/liquid interfaces compared to weakly bonded interfaces is due to increased coupling of low-frequency modes when the solid is better wetted by the liquid. Local phonon density of states and spectral temperature calculations confirm this finding. Specifically, we show that highly wetted solids couple low frequency phonon energies more efficiently, where the interface of a poorly wetted solid acts like free surfaces. The spectral temperature calculations provide further evidence of low frequency phonon mode coupling under non equilibrium conditions. These results quantitatively explain the influence of wetting on thermal boundary conductance across solid/liquid interfaces. (c) 2014 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Implications of Interfacial Bond Strength on the Spectral Contributions to Thermal Boundary Conductance across Solid, Liquid, and Gas Interfaces: A Molecular Dynamics Study
    Giri, Ashutosh
    Braun, Jeffrey L.
    Hopkins, Patrick E.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (43): : 24847 - 24856
  • [2] Analytical model for the effects of wetting on thermal boundary conductance across solid/classical liquid interfaces
    Caplan, Matthew E.
    Giri, Ashutosh
    Hopkins, Patrick E.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (15):
  • [3] Thermal boundary conductance across rough interfaces probed by molecular dynamics
    Merabia, Samy
    Termentzidis, Konstantinos
    PHYSICAL REVIEW B, 2014, 89 (05)
  • [4] Effects of temperature and disorder on thermal boundary conductance at solid-solid interfaces: Nonequilibrium molecular dynamics simulations
    Stevens, Robert J.
    Zhigilei, Leonid V.
    Norris, Pamela M.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2007, 50 (19-20) : 3977 - 3989
  • [5] A molecular dynamics study of thermal boundary resistance over solid interfaces with an extremely thin liquid film
    Liu, Xiao
    Surblys, Donatas
    Kawagoe, Yoshiaki
    Bin Saleman, Abdul Rafeq
    Matsubara, Hiroki
    Kikugawa, Gota
    Ohara, Taku
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 147
  • [6] Thermal boundary conductance across solid-solid interfaces at high temperatures: A microscopic approach
    Zhong, Jinxin
    Xi, Qing
    Wang, Zhiguo
    Nakayama, Tsuneyoshi
    Li, Xiaobo
    Liu, Jun
    Zhou, Jun
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (19)
  • [7] Influence of anisotropy on thermal boundary conductance at solid interfaces
    Hopkins, Patrick E.
    Beechem, Thomas
    Duda, John C.
    Hattar, Khalid
    Ihlefeld, Jon F.
    Rodriguez, Mark A.
    Piekos, Edward S.
    PHYSICAL REVIEW B, 2011, 84 (12)
  • [8] A Review of Experimental and Computational Advances in Thermal Boundary Conductance and Nanoscale Thermal Transport across Solid Interfaces
    Giri, Ashutosh
    Hopkins, Patrick E.
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (08)
  • [9] Molecular dynamics investigation of surface roughness scale effect on interfacial thermal conductance at solid-liquid interfaces
    Surblys, Donatas
    Kawagoe, Yoshiaki
    Shibahara, Masahiko
    Ohara, Taku
    JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (11):
  • [10] Thermal boundary conductance across epitaxial metal/sapphire interfaces
    Koh, Yee Rui
    Shi, Jingjing
    Wang, Baiwei
    Hu, Renjiu
    Ahmad, Habib
    Kerdsongpanya, Sit
    Milosevic, Erik
    Doolittle, W. Alan
    Gall, Daniel
    Tian, Zhiting
    Graham, Samuel
    Hopkins, Patrick E.
    PHYSICAL REVIEW B, 2020, 102 (20)