Quantum simulation of the Dirac equation

被引:548
|
作者
Gerritsma, R. [1 ,2 ]
Kirchmair, G. [1 ,2 ]
Zaehringer, F. [1 ,2 ]
Solano, E. [3 ,4 ]
Blatt, R. [1 ,2 ]
Roos, C. F. [1 ,2 ]
机构
[1] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, A-6020 Innsbruck, Austria
[2] Univ Innsbruck, Inst Expt Phys, A-6020 Innsbruck, Austria
[3] Univ Pais Vasco Euskal Herriko Unibertsitatea, Dept Quim Fis, Bilbao 48080, Spain
[4] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
基金
奥地利科学基金会;
关键词
GRAPHENE;
D O I
10.1038/nature08688
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Dirac equation(1) successfully merges quantum mechanics with special relativity. It provides a natural description of the electron spin, predicts the existence of antimatter(2) and is able to reproduce accurately the spectrum of the hydrogen atom. The realm of the Dirac equation-relativistic quantum mechanics-is considered to be the natural transition to quantum field theory. However, the Dirac equation also predicts some peculiar effects, such as Klein's paradox(3) and 'Zitterbewegung', an unexpected quivering motion of a free relativistic quantum particle(4). These and other predicted phenomena are key fundamental examples for understanding relativistic quantum effects, but are difficult to observe in real particles. In recent years, there has been increased interest in simulations of relativistic quantum effects using different physical set-ups(5-11), in which parameter tunability allows access to different physical regimes. Here we perform a proof-of-principle quantum simulation of the one-dimensional Dirac equation using a single trapped ion(7) set to behave as a free relativistic quantum particle. We measure the particle position as a function of time and study Zitterbewegung for different initial superpositions of positive- and negative-energy spinor states, as well as the crossover from relativistic to non-relativistic dynamics. The high level of control of trapped-ion experimental parameters makes it possible to simulate textbook examples of relativistic quantum physics.
引用
收藏
页码:68 / U72
页数:5
相关论文
共 50 条
  • [1] Quantum simulation of the Dirac equation
    R. Gerritsma
    G. Kirchmair
    F. Zähringer
    E. Solano
    R. Blatt
    C. F. Roos
    Nature, 2010, 463 : 68 - 71
  • [2] Quantum Simulation of the Dirac Particle
    Ostrowski, Marcin
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2015, 22 (01):
  • [3] Exact quantum revivals for the Dirac equation
    Chamizo, Fernando
    Santillan, Osvaldo P.
    PHYSICAL REVIEW A, 2024, 109 (02)
  • [4] DIRAC-EQUATION ON THE QUANTUM NET
    SELESNICK, SA
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (08) : 3936 - 3958
  • [5] Optical simulation of the free Dirac equation
    Silva, Thais L.
    Taillebois, E. R. F.
    Gomes, R. M.
    Walborn, S. P.
    Avelar, Ardiley T.
    PHYSICAL REVIEW A, 2019, 99 (02)
  • [6] Photonic Simulation of the Dirac Equation in Metamaterials
    Tan, W.
    Sun, Y.
    Shen, S. Q.
    Chen, H.
    2014 8TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS (METAMATERIALS), 2014,
  • [7] Analog quantum simulation of the spinor-four Dirac equation with an artificial gauge field
    Garreau, Jean Claude
    Zehnle, Veronique
    PHYSICAL REVIEW A, 2020, 101 (05)
  • [8] Dirac equation with an ultraviolet cutoff and a quantum walk
    Sato, Fumihito
    Katori, Makoto
    PHYSICAL REVIEW A, 2010, 81 (01):
  • [9] Factorization of the Dirac equation and a graphene quantum dot
    Zahidi, Youness
    Jellal, Ahmed
    Bahlouli, Hocine
    El Bouziani, Mohammed
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [10] Simulation of Zitterbewegung by modelling the Dirac equation in metamaterials
    Ahrens, Sven
    Zhu, Shi-Yao
    Jiang, Jun
    Sun, Yong
    NEW JOURNAL OF PHYSICS, 2015, 17