Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste

被引:150
|
作者
Han, Wei [1 ]
Fang, Jun [1 ]
Liu, Zhixiang [1 ]
Tang, Junhong [1 ]
机构
[1] Hangzhou Dianzi Univ, Coll Mat & Environm Engn, Hangzhou 310018, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
Economic feasibility; Combined bioprocess; Food waste; Hydrogen production; Industrialization; BIOHYDROGEN PRODUCTION; ANAEROBIC-DIGESTION; DARK FERMENTATION; PERFORMANCE; REACTORS; SINGLE; WATER;
D O I
10.1016/j.biortech.2015.11.072
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
In this study, the techno-economic evaluation of a combined bioprocess based on solid state fermentation for fermentative hydrogen production from food waste was carried out. The hydrogen production plant was assumed to be built in Hangzhou and designed for converting 3 ton food waste per day into hydrogen. The total capital cost (TCC) and the annual production cost (APC) were US$583092 and US $88298.1/year, respectively. The overall revenue after the tax was US$146473.6/year. The return on investment (ROI), payback period (PBP) and internal rate of return (IRR) of the plant were 26.75%, 5 years and 24.07%, respectively. The results exhibited that the combined bioprocess for hydrogen production from food waste was feasible. This is an important study for attracting investment and industrialization interest for hydrogen production from food waste in the industrial scale. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:107 / 112
页数:6
相关论文
共 50 条
  • [1] Techno-economic Assessment of the Fermentative Hydrogen Production from Sugar Beet
    Urbaniec, Krzysztof
    Grabarczyk, Robert
    [J]. PRES 2012: 15TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2012, 29 : 1081 - 1086
  • [2] Techno-Economic Evaluation of Biogas Production from Food Waste for Electricity Generation
    Kulugomba, Regina
    Thongsan, Sahataya
    Vivuidth, Sarayooth
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE & UTILITY EXHIBITION ON GREEN ENERGY FOR SUSTAINABLE DEVELOPMENT (ICUE), 2014,
  • [3] Techno-economic evaluation of biogas production from food waste via anaerobic digestion
    Al-Wahaibi, Abeer
    Osman, Ahmed I.
    Al-Muhtaseb, Ala'a H.
    Alqaisi, Othman
    Baawain, Mahad
    Fawzy, Samer
    Rooney, David W.
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [4] Techno-economic evaluation of biogas production from food waste via anaerobic digestion
    Abeer Al-Wahaibi
    Ahmed I. Osman
    Ala’a H. Al-Muhtaseb
    Othman Alqaisi
    Mahad Baawain
    Samer Fawzy
    David W. Rooney
    [J]. Scientific Reports, 10
  • [5] A combined bioprocess based on solid-state fermentation for dark fermentative hydrogen production from food waste
    Han, Wei
    Ye, Min
    Zhu, Ai Jun
    Huang, Jin Gang
    Zhao, Hong Ting
    Li, Yong Feng
    [J]. JOURNAL OF CLEANER PRODUCTION, 2016, 112 : 3744 - 3749
  • [6] Thermodynamic and techno-economic analysis of hydrogen production from food waste by torrefaction integrated with steam gasification
    Zhao, Changxi
    Huang, Jingchun
    Xie, Die
    Qiao, Yu
    Xu, Minghou
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2024, 299
  • [7] Techno-economic evaluation of biodiesel production from waste cooking oil
    Sharma, Kal Renganathan
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [8] Techno-economic evaluation of biohydrogen production from wastewater and agricultural waste
    Li, Ya-Chieh
    Liu, Yung-Feng
    Chu, Chen-Yeon
    Chang, Pao-Long
    Hsu, Chiung-Wen
    Lin, Ping-Jei
    Wu, Shu-Yii
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (20) : 15704 - 15710
  • [9] Fermentative hydrogen production from food waste
    Kim, Y.
    Jo, J. H.
    Lee, D. S.
    Park, J. M.
    [J]. NEW DEVELOPMENT AND APPLICATION IN CHEMICAL REACTION ENGINEERING, 4TH ASIA-PACIFIC CHEMICAL REACTION ENGINEERING SYMPOSIUM (APCRE 05), 2006, 159 : 149 - 152
  • [10] A Systematic Study on Techno-Economic Evaluation of Hydrogen Production
    de Abreu, Victor Hugo Souza
    Pereira, Victoria Goncalves Ferreira
    Proenca, Lais Ferreira Crispino
    Toniolo, Fabio Souza
    Santos, Andrea Souza
    [J]. ENERGIES, 2023, 16 (18)