An Evaluation of Consensus Techniques for Diagnostic Interpretation

被引:0
|
作者
Sauter, Jake N. [1 ]
LaBarre, Victoria M. [2 ]
Furst, Jacob D. [3 ]
Raicu, Daniela S. [3 ]
机构
[1] SUNY Coll Oswego, 7060 Route 104, Oswego, NY USA
[2] McLennan Community Coll, 140 Coll Dr, Waco, TX USA
[3] Coll Comp & Digital Media, 243 South Wabash Ave, Chicago, IL USA
基金
美国国家科学基金会;
关键词
Belief Decision Tree; LIDC; Leverage Label Variability; PULMONARY NODULES; LUNG;
D O I
10.1117/12.2293778
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Learning diagnostic labels from image content has been the standard in computer-aided diagnosis. Most computer-aided diagnosis systems use low-level image features extracted directly from image content to train and test machine learning classifiers for diagnostic label prediction. When the ground truth for the diagnostic labels is not available, reference truth is generated from the experts diagnostic interpretations of the image/region of interest. More specifically, when the label is uncertain, e.g. when multiple experts label an image and their interpretations are different, techniques to handle the label variability are necessary. In this paper, we compare three consensus techniques that are typically used to encode the variability in the experts labeling of the medical data: mean, median and mode, and their effects on simple classifiers that can handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees). Given that the NIH/NCI Lung Image Database Consortium (LIDC) data provides interpretations for lung nodules by up to four radiologists, we leverage the LIDC data to evaluate and compare these consensus approaches when creating computer-aided diagnosis systems for lung nodules. First, low-level image features of nodules are extracted and paired with their radiologists semantic ratings (1= most likely benign, 5 = most likely malignant); second, machine learning multi-class classifiers that handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees) are built to predict the lung nodules semantic ratings. We show that the mean-based consensus generates the most robust classifier overall when compared to the median- and mode-based consensus. Lastly, the results of this study show that, when building CAD systems with uncertain diagnostic interpretation, it is important to evaluate different strategies for encoding and predicting the diagnostic label.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Consensus workshop on advanced diagnostic andrology techniques
    Barratt, CLR
    Canale, D
    Cooper, TG
    deJonge, C
    Fraser, LR
    Hansen, TH
    Hovatta, O
    Irvine, DS
    Kvist, U
    Mandelbaum, J
    Mortimer, D
    Nikolanopoulos, S
    Oehninger, S
    Royere, D
    Sigg, C
    Smedile, G
    Soffer, Y
    Tesarik, J
    VanKooij, RJ
    Vinci, G
    HUMAN REPRODUCTION, 1996, 11 (07) : 1463 - 1479
  • [2] Consensus workshop on advanced diagnostic andrology techniques
    Fraser, L
    Barratt, CLR
    Canale, D
    Cooper, T
    DeJonge, C
    Irvine, S
    Mortimer, D
    Oehninger, S
    Tesarik, J
    HUMAN REPRODUCTION, 1997, 12 (04) : 873 - 873
  • [3] Towards achieving diagnostic consensus in medical image interpretation
    Seidel, Mike
    Rasin, Alexander
    Furst, Jacob D.
    Raicu, Daniela S.
    2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2014, : 771 - 780
  • [4] CONSENSUS CONFERENCE ON INTRAORAL MODELS - EVALUATION TECHNIQUES
    FEATHERSTONE, JDB
    JOURNAL OF DENTAL RESEARCH, 1992, 71 : 955 - 956
  • [5] NOTE ON THE EVALUATION OF DIAGNOSTIC-TECHNIQUES
    KOBBERLING, J
    TRAMPISCH, HJ
    WINDELER, J
    ZEITSCHRIFT FUR GASTROENTEROLOGIE, 1990, 28 (03): : 173 - 176
  • [6] Tuberous sclerosis consensus conference: Recommendations for diagnostic evaluation
    Roach, ES
    DiMario, FJ
    Kandt, RS
    Northrup, H
    JOURNAL OF CHILD NEUROLOGY, 1999, 14 (06) : 401 - 407
  • [7] A CONSENSUS PROTOCOL FOR DIAGNOSTIC EVALUATION FOR DISORDERS WITH IMPAIRED CYTOTOXICITY
    Bryceson, Yenan
    Pende, Daniela
    Maul-Pavicic, Andrea
    Gilmour, Kimberly
    Chiang, Samuel
    Rohr, Jan
    Menager, Michael
    Walshe, Denise
    Henter, Jan-Inge
    Janka, Gritta
    Arico, Maurizio
    de Saint-Basile, Genevieve
    Ehl, Stephan
    PEDIATRIC BLOOD & CANCER, 2011, 56 (04) : 691 - 691
  • [8] Common Diagnostic Problems in Interpretation of Early Invasive Bladder Cancer: A Consensus Study
    Shen, S. S.
    Guo, C. C.
    Ro, J. Y.
    Anton, R.
    Cheng, L.
    Hameed, O.
    Truong, L. D.
    Huang, J.
    Weiss, M. A.
    Lin, F.
    Srigley, J. R.
    McKenney, J. K.
    Tamboli, P.
    Grignon, D. J.
    Jimenez, R. E.
    Zhou, M.
    Paner, G. P.
    Troncoso, P.
    Amin, M. B.
    Ayala, A. G.
    LABORATORY INVESTIGATION, 2011, 91 : 224A - 224A
  • [9] Common Diagnostic Problems in Interpretation of Early Invasive Bladder Cancer: A Consensus Study
    Shen, S. S.
    Guo, C. C.
    Ro, J. Y.
    Anton, R.
    Cheng, L.
    Hameed, O.
    Truong, L. D.
    Huang, J.
    Weiss, M. A.
    Lin, F.
    Srigley, J. R.
    McKenney, J. K.
    Tamboli, P.
    Grignon, D. J.
    Jimenez, R. E.
    Zhou, M.
    Paner, G. P.
    Troncoso, P.
    Amin, M. B.
    Ayala, A. G.
    MODERN PATHOLOGY, 2011, 24 : 224A - 224A
  • [10] Diagnostic Interpretation Guidance for Pediatric Enteric Pathogens: A Modified Delphi Consensus Process
    Stang, Antonia S.
    Trudeau, Melanie
    Vanderkooi, Otto G.
    Lee, Bonita E.
    Chui, Linda
    Pang, Xiao-Li
    Allen, Vanessa
    Burnham, Carey-Ann D.
    Goldfarb, David M.
    MacDonald, Judy
    Parsons, Brendon
    Petrich, Astrid
    Pollari, Frank
    Tarr, Phillip, I
    Tipples, Graham
    Zhuo, Ran
    Freedman, Stephen B.
    CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY, 2018, 2018