Quantum dynamical semigroups and non-decomposable positive maps

被引:20
|
作者
Benatti, F
Floreanini, R [1 ]
Piani, M
机构
[1] Ist Nazl Fis Nucl, Sez Trieste, I-34100 Trieste, Italy
[2] Univ Trieste, Dipartimento Fis Teor, I-34014 Trieste, Italy
关键词
open systems; entanglement; non-decomposable positive maps;
D O I
10.1016/j.physleta.2004.04.046
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study dynamical semigroups of positive, but not completely positive maps on finite-dimensional bipartite systems and analyze properties of their generators in relation to non-decomposability and bound-entanglement. An example of non- decomposable semigroup leading to a (4 x 4)-dimensional bound-entangled density matrix is explicitly obtained. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:187 / 198
页数:12
相关论文
共 50 条
  • [1] Non-decomposable quantum dynamical semigroups and bound entangled states
    Benatti, F
    Floreanini, R
    Piani, M
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2004, 11 (04): : 325 - 338
  • [2] NON-DECOMPOSABLE NAMBU BRACKETS
    Bering, Klaus
    ARCHIVUM MATHEMATICUM, 2015, 51 (04): : 211 - 232
  • [3] CONSTRUCTION OF NON-DECOMPOSABLE POSITIVE DEFINITE UNIMODULAR QUADRATIC FORMS
    朱福祖
    Science China Mathematics, 1987, (01) : 19 - 31
  • [4] CONSTRUCTION OF NON-DECOMPOSABLE POSITIVE DEFINITE UNIMODULAR QUADRATIC-FORMS
    ZHU, FZ
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1987, 30 (01): : 19 - 31
  • [5] Scalable Learning of Non-Decomposable Objectives
    Eban, Elad
    Schain, Mariano
    Mackey, Alan
    Gordon, Ariel
    Saurous, Rif A.
    Elidan, Gal
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54, 2017, 54 : 832 - 840
  • [6] Optimizing non-decomposable measures with deep networks
    Sanyal, Amartya
    Kumar, Pawan
    Kar, Purushottam
    Chawla, Sanjay
    Sebastiani, Fabrizio
    MACHINE LEARNING, 2018, 107 (8-10) : 1597 - 1620
  • [7] Recovery From Non-Decomposable Distance Oracles
    Hu, Zhuangfei
    Li, Xinda
    Woodruff, David P.
    Zhang, Hongyang
    Zhang, Shufan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (10) : 6443 - 6469
  • [8] On positive decomposable maps
    Majewski, W. A.
    REPORTS ON MATHEMATICAL PHYSICS, 2007, 59 (03) : 289 - 298
  • [9] Optimizing non-decomposable measures with deep networks
    Amartya Sanyal
    Pawan Kumar
    Purushottam Kar
    Sanjay Chawla
    Fabrizio Sebastiani
    Machine Learning, 2018, 107 : 1597 - 1620
  • [10] On non-decomposable Hermitian forms over Gaussian domain
    Zhu, FZ
    ACTA MATHEMATICA SINICA-NEW SERIES, 1998, 14 (04): : 447 - 456