Multiple solutions for nonhomogeneous Schrodinger-Maxwell problems in R3

被引:0
|
作者
Pan, Ling [1 ]
Zhang, Jihui [1 ]
Shang, Xudong [2 ]
机构
[1] Nanjing Normal Univ, Inst Math, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Taizhou Coll, Sch Math Sci, Taizhou, Jiangsu, Peoples R China
关键词
multiple solutions; nonhomogeneous; variational method; STANDING WAVES; EXISTENCE; STABILITY;
D O I
10.1080/00036811.2014.1000313
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the nonhomogeneous Schrodinger-Maxwell problems in R-3. {-Delta u + u + (lambda) over cap (1)phi(1)(x)u = 1/sigma partial derivative F(u,v)/partial derivative u + g(x), x is an element of R-3, -Delta v + v + (lambda) over cap (2)phi(2)(x)v = 1/sigma partial derivative F(u,v)/partial derivative v + h(x), x is an element of R-3, -Delta phi(1) = u(2), x is an element of R-3, -Delta phi(2) = v(2), x is an element of R-3, where F(u, v) is a C-1 function, 2 < sigma < 6, (lambda) over cap (1), (lambda) over cap (2) > 0, 0 <= g(x), h(x) are radially symmetric functions. Using variational methods, we prove that the problems have at least two solutions provided that root 2 max {parallel to g parallel to(2), parallel to h parallel to(2)} <= c(sigma).
引用
收藏
页码:174 / 186
页数:13
相关论文
共 50 条