Learning Unbalanced and Sparse Low-Order Tensors

被引:0
|
作者
Hoang, Pham Minh [1 ,5 ]
Tuan, Hoang Duong [2 ,5 ,6 ,7 ,8 ]
Son, Tran Thai [1 ]
Poor, H. Vincent [3 ,9 ,10 ,11 ]
Hanzo, Lajos [4 ]
机构
[1] VNU HCM, Univ Sci, Fac Informat Technol, Ho Chi Minh City, Vietnam
[2] Univ Technol Sydney, Sch Elect & Data Engn, Ultimo, NSW 2007, Australia
[3] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
[4] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, England
[5] Univ Technol Sydney, Sch Elect & Data Engn, Ultimo, NSW, Australia
[6] Nagoya Univ, Dept Elect Mech Engn, Nagoya, Japan
[7] Toyota Technol Inst, Dept Elect & Comp Engn, Nagoya, Japan
[8] Univ New South Wales, Sch Elect Engn & Telecommun, Sydney, NSW, Australia
[9] Univ Illinois, Urbana, IL USA
[10] Princeton Univ, Princeton, NJ USA
[11] Princetos Sch Engn & Appl Sci, Princeton, NJ USA
基金
欧洲研究理事会; 英国工程与自然科学研究理事会; 美国国家科学基金会; 澳大利亚研究理事会;
关键词
Matrix and/or low-order tensor completion; tensor train decomposition; tensor train rank; l(q); VIDEO RECOVERY; MATRIX; COMPLETION; APPROXIMATION; IMAGE; FACTORIZATION; ALGORITHM; MODEL;
D O I
10.1109/TSP.2022.3221661
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Efficient techniques are developed for completing unbalanced and sparse low-order tensors, which cannot be effectively completed by popular matrix-rank optimization based techniques such as compressed sensing and/or the l(q)-matrix-metric. We use our previously developed 2D-index encoding technique for tensor augmentation in order to represent these incomplete low-order tensors by high-order but low-dimensional tensors with their modes building up a coarse-grained hierachy of correlations among the incomplete tensor entries. The concept of tensor-trains is then exploited for decomposing these augmented tensors into trains of balanced and sparse matrices for efficient completion. More explicitly, we develop powerful algorithms exhibiting an excellent performance vs. complexity trade-off, which are supported by numerical examples by relying on matrix data and third-order tensor data derived from color image pixels.
引用
收藏
页码:5624 / 5638
页数:15
相关论文
共 50 条
  • [1] SPARSE FIR ESTIMATION OF LOW-ORDER SYSTEMS
    Ling, Qing
    Shi, Wei
    Wu, Gang
    Tian, Zhi
    [J]. 2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 321 - 324
  • [2] Low-Order Moments of Velocity Gradient Tensors in Two-Dimensional Isotropic Turbulence
    Luo, Chensheng
    Yang, Ping-Fan
    Fang, Le
    [J]. SYMMETRY-BASEL, 2024, 16 (02):
  • [3] On learning the visibility for joint importance sampling of low-order scattering
    Zhou, Guo
    Zhu, Dengming
    Li, Ting
    Wang, Zhaoqi
    Zhou, Yongquan
    [J]. NEUROCOMPUTING, 2017, 228 : 97 - 105
  • [4] In-Database Learning with Sparse Tensors
    Khamis, Mahmoud Abo
    Ngo, Hung Q.
    Nguyen, XuanLong
    Olteanu, Dan
    Schleich, Maximilian
    [J]. PODS'18: PROCEEDINGS OF THE 37TH ACM SIGMOD-SIGACT-SIGAI SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS, 2018, : 325 - 340
  • [5] Effective Linkage Learning Using Low-Order Statistics and Clustering
    Emmendorfer, Leonardo Ramos
    Ramirez Pozo, Aurora Trinidad
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (06) : 1233 - 1246
  • [6] Sparse Measurement-Based Modelling Low-Order Dynamics for Primary Frequency Regulation
    Wang, Bo
    Zhu, Shishuai
    Cai, Guowei
    Yang, Deyou
    Chen, Zhe
    Ma, Jin
    Sun, Zhenglong
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (01) : 681 - 692
  • [7] LOW-ORDER ZNS POLYTYPES
    KIFLAWI, I
    MARDIX, S
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL CRYSTALLOGRAPHY AND CRYSTAL CHEMISTRY, 1970, B 26 : 1192 - &
  • [8] LOW-ORDER STABILIZING CONTROLLERS
    GU, DW
    CHOI, BW
    POSTLETHWAITE, I
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (11) : 1713 - 1717
  • [9] A NOTE ON LOW-ORDER MODELING
    ASHOOR, N
    SINGH, V
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (05) : 1124 - 1126
  • [10] A Low-Order Autofocus Algorithm
    Piper, John E.
    Sternlicht, Daniel D.
    [J]. OCEANS 2011, 2011,