Optimization of Stereo-matching Algorithms Using Existing DEM Data

被引:4
|
作者
Milledge, D. G. [1 ]
Lane, S. N. [1 ]
Warburton, J. [1 ]
机构
[1] Univ Durham, Dept Geog, Sci Labs, Durham DH1 3LE, England
来源
关键词
DIGITAL ELEVATION MODELS; PHOTOGRAMMETRY; TOPOGRAPHY; ACCURACY;
D O I
10.14358/PERS.75.3.323
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Here we present a new method for using existing Digital Elevation Model (DEM) data to optimize performance of stereo-matching algorithms for digital topographic determination. We show that existing DEM data, even those of a poor quality (precision, resolution) can be used as a means of training stereo-matching algorithms to generate higher quality DEM data. Existing data are used to identify and to remove cross surface errors. We test the method using true vertical aerial imagery for a UK upland study site. Results demonstrate a dramatic improvement in data quality even where DEM data derived from topographic maps are adopted. Comparison with other methods suggests that using existing DEM data improves error identification and correction significantly. Tests suggest that it is applicable to both archival and commissioned aerial imagery.
引用
收藏
页码:323 / 333
页数:11
相关论文
共 50 条
  • [1] Stereo-Matching Techniques Optimisation Using Evolutionary Algorithms
    Bevilacqua, Vitoantonio
    Mastronardi, Giuseppe
    Menolascina, Filippo
    Nitti, Davide
    INTELLIGENT COMPUTING, PART I: INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, ICIC 2006, PART I, 2006, 4113 : 612 - 621
  • [2] Novel Stereo-Matching Method Utilizing Surface Normal Data
    Song, Euijeong
    Kim, Seokjung
    Chang, Minho
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2020, 21 (08) : 1437 - 1445
  • [3] Novel Stereo-Matching Method Utilizing Surface Normal Data
    Euijeong Song
    Seokjung Kim
    Minho Chang
    International Journal of Precision Engineering and Manufacturing, 2020, 21 : 1437 - 1445
  • [4] Use of stereo-matching to coregister multiangle data from MISR
    Moroney, C
    Horváth, A
    Davies, R
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (07): : 1541 - 1546
  • [5] Stereo-Matching Network for Structured Light
    Du, Qiuchen
    Liu, Rongke
    Guan, Boshen
    Pan, Yu
    Sun, Shuqiao
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (01) : 164 - 168
  • [6] StereoVAE: A lightweight stereo-matching system using embedded GPUs
    Chang, Qiong
    Li, Xiang
    Xu, Xin
    Liu, Xin
    Li, Yun
    Miyazaki, Jun
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 1982 - 1988
  • [7] Optimization for image stereo-matching using deep reinforcement learning in rule constraints and parallax estimation
    Ren, Jie
    Guan, Fuyu
    Li, Xueyan
    Cao, Jie
    Li, Xiaofeng
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (35): : 24701 - 24711
  • [8] Optimization for image stereo-matching using deep reinforcement learning in rule constraints and parallax estimation
    Jie Ren
    Fuyu Guan
    Xueyan Li
    Jie Cao
    Xiaofeng Li
    Neural Computing and Applications, 2023, 35 : 24701 - 24711
  • [9] A Comparative Study of Stereo-Matching Algorithms for Road-Modeling in the Presence of Windscreen Wipers
    Schauwecker, Konstantin
    Morales, Sandino
    Hermann, Simon
    Klette, Reinhard
    2011 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2011, : 7 - 12
  • [10] IMPLEMENTING AN ADAPTIVE APPROACH FOR DENSE STEREO-MATCHING
    Stentoumis, Christos
    Grammatikopoulos, Lazaros
    Kalisperakis, Ilias
    Karras, George
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION V, 2012, 39-B5 : 309 - 314