CONVERGENCE RATES FOR KACZMARZ-TYPE REGULARIZATION METHODS

被引:12
|
作者
Kindermann, Stefan [1 ]
Leitao, Antonio [2 ]
机构
[1] Johannes Kepler Univ Linz, Inst Ind Math, A-4040 Linz, Austria
[2] Univ Fed Santa Catarina, Dept Math, BR-88040900 Florianopolis, SC, Brazil
关键词
Ill-posed systems; Landweber-Kaczmarz; convergence rates; regularization; ILL-POSED EQUATIONS; LANDWEBER ITERATION; POWER BOUNDEDNESS; LINEAR EQUATIONS; SOLVING SYSTEMS; HILBERT-SPACE;
D O I
10.3934/ipi.2014.8.149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is devoted to the convergence analysis of a special family of iterative regularization methods for solving systems of ill{posed operator equations in Hilbert spaces, namely Kaczmarz-type methods. The analysis is focused on the Landweber-Kaczmarz (LK) explicit iteration and the iterated Tikhonov-Kaczmarz (iTK) implicit iteration. The corresponding symmetric versions of these iterative methods are also investigated (sLK and siTK). We prove convergence rates for the four methods above, extending and complementing the convergence analysis established originally in [22, 13, 12, 8].
引用
收藏
页码:149 / 172
页数:24
相关论文
共 50 条
  • [1] The extensions of convergence rates of Kaczmarz-type methods
    Kang, Chuan-gang
    Zhou, Heng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 382 (382)
  • [2] Convergence rates for Kaczmarz-type algorithms
    Popa, Constantin
    NUMERICAL ALGORITHMS, 2018, 79 (01) : 1 - 17
  • [3] Convergence rates for Kaczmarz-type algorithms
    Constantin Popa
    Numerical Algorithms, 2018, 79 : 1 - 17
  • [4] Correction to: convergence rates for Kaczmarz-type algorithms
    Constantin Popa
    Numerical Algorithms, 2019, 82 : 1117 - 1120
  • [5] On convergence rates of Kaczmarz-type methods with different selection rules of working rows
    Bai, Zhong-Zhi
    Wang, Lu
    APPLIED NUMERICAL MATHEMATICS, 2023, 186 (289-319) : 289 - 319
  • [6] Convergence analysis for Kaczmarz-type methods in a Hilbert space framework
    Oswald, Peter
    Zhou, Weiqi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 478 : 131 - 161
  • [7] convergence rates for Kaczmarz-type algorithms (vol 79, pg 1, 2018)
    Popa, Constantin
    NUMERICAL ALGORITHMS, 2019, 82 (03) : 1117 - 1120
  • [8] Kaczmarz-type methods for solving matrix equations
    Li, Weiguo
    Bao, Wendi
    Xing, Lili
    Guo, Zhiwei
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2024, 101 (07) : 708 - 731
  • [9] On greedy randomized Kaczmarz-type methods for solving the system of tensor equations
    Wang, Jungang
    Li, Zexi
    Ran, Yuhong
    Li, Yiqiang
    APPLIED MATHEMATICS LETTERS, 2024, 158
  • [10] On regularization methods of EM-Kaczmarz type
    Haltmeier, M.
    Leitao, A.
    Resmerita, E.
    INVERSE PROBLEMS, 2009, 25 (07)