A Spherical FDTD Numerical Dispersion Relation Based on Elemental Spherical Wave Functions

被引:1
|
作者
Hadi, Mohammed F. [1 ]
Bollimuntha, Ravi C. [2 ]
Elsherbeni, Atef Z. [1 ]
Piket-May, Melinda [2 ]
机构
[1] Colorado Sch Mines, Elect Engn Dept, Golden, CO 80401 USA
[2] Univ Colorado Boulder, Elect Comp & Energy Engn Dept, Boulder, CO 80003 USA
来源
关键词
Finite-difference time-domain method; numerical dispersion; spherical coordinates;
D O I
10.1109/LAWP.2018.2816459
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The numerical dispersion relation for the finite-difference time-domain method in three-dimensional spherical coordinates is derived. Derivation is based on matching spherical wave functions and results in a relation that is equally valid in the entire spherical space. It also matches the sensitivity of the under-lying method to singular solutions behavior near the origin and the z-axis. Derived relation is confirmed to converge in the far field to the corresponding relation for Cartesian space. It also converges to the appropriate continuous space limit when all discrete steps approach zero. Detailed sensitivity analysis to mesh parameters and absolute position within spherical space is also presented.
引用
收藏
页码:784 / 788
页数:5
相关论文
共 50 条
  • [1] Numerical Dispersion Analysis for Spherical FDTD
    Bollimuntha, Ravi C.
    Hadi, Mohammed F.
    Piket-May, Melinda J.
    Elsherbeni, Atef Z.
    2018 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2018,
  • [2] Spherical wave sources in FDTD
    Potter, ME
    Okoniewski, M
    Stuchly, MA
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2002, 12 (04) : 142 - 144
  • [3] Stored Energy and Quality Factor of Spherical Wave Functions-in Relation to Spherical Antennas With Material Cores
    Hansen, Troels V.
    Kim, Oleksiy S.
    Breinbjerg, Olav
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (03) : 1281 - 1290
  • [4] Quaternionic spherical wave functions
    Morais, Joao
    Le, H. T.
    Antonio Perez-de la Rosa, Marco
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (18) : 5118 - 5130
  • [5] Antenna De-Embedding in FDTD Using Spherical Wave Functions by Exploiting Orthogonality
    Moerlein, Leonardo
    Berkelmann, Lukas
    Manteuffel, Dirk
    2022 16TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2022,
  • [6] Dispersion relation for spherical electromagnetic resonances in the atmosphere
    Füllekrug, M
    PHYSICS LETTERS A, 2000, 275 (1-2) : 80 - 89
  • [7] VECTOR WAVE FUNCTIONS IN SPHERICAL COORDINATES
    OGURA, H
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1969, 52 (12): : 93 - +
  • [8] NUMERICAL SOLUTION OF A SPHERICAL BLAST WAVE
    BRODE, HL
    PHYSICAL REVIEW, 1954, 95 (02): : 658 - 658
  • [9] Numerical modeling of a spherical array of monopoles using FDTD method
    Franek, Ondrej
    Pedersen, Gert Frolund
    Andersen, Jorgen Bach
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2006, 54 (07) : 1952 - 1963
  • [10] ON THE COMPLETENESS OF THE SPHERICAL VECTOR WAVE-FUNCTIONS
    AYDIN, K
    HIZAL, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 117 (02) : 428 - 440