Lower bounds for the Lipschitz constants of some classical fixed point free maps

被引:3
|
作者
Ferrer, J.
Llorens-Fuster, E.
机构
关键词
Hilbert space; Fixed point; Fixed point free mapping; Lipschitzian map; Lipschitz constant; RENORMINGS;
D O I
10.1016/j.jmaa.2018.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find lower bounds for the set of Lipschitz constants of a given Lipschitzian map, defined on the closed unit ball of a Hilbert space, with respect to any reforming. We introduce a class of maps, defined in the closed unit ball of 2, which contains the classical fixed point free maps due to Goebel-Kirk-Thelle, Baillon, and P.K. Lin. We show that for any map of this class its uniform Lipschitz constant with respect to any reforming of l(2) is never strictly less than pi/2. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:297 / 308
页数:12
相关论文
共 50 条