Improving 2D mesh image segmentation with Markovian Random Fields

被引:0
|
作者
Cuadros-Vargas, Alex J. [1 ]
Gerhardinger, Leandro C. [1 ]
de Castro, Mario [1 ]
Batista Neto, Joao [1 ]
Nonato, Luis Gustavo [1 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, CP 668, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Traditional mesh segmentation methods normally operate on geometrical models with no image information. On the other hand, 2D image-based mesh generation and segmentation counterparts, such as Imesh [6] perform the task by following a set of well defined rules derived from the geometry of the triangles, but with no statistical information of the mesh elements. This paper presents a novel segmentation method that combines the original Imesh image-based segmentation approach with Markovian Random Field (MRF) models. It takes an image as input, generate a mesh of triangles and, by treating the mesh as a Markovian field, produces quality unsupervised segmentation. The results have demonstrated that the method not only provides better segmentation than that of original Imesh, but is also capable of producing MRF-like segmentation output for certain types of images, with considerable cut in processing times.
引用
收藏
页码:61 / +
页数:3
相关论文
共 50 条
  • [1] Using 2D topological map information in a Markovian image segmentation
    Damiand, G
    Alata, O
    Bihoreau, C
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, PROCEEDINGS, 2003, 2886 : 288 - 297
  • [2] 2D conditional random fields for image classification
    Wen, Ming
    Han, Hui
    Wang, Lu
    Wang, Wenyuan
    INTELLIGENT INFORMATION PROCESSING III, 2006, 228 : 383 - +
  • [3] THE WHOLE MESH DEFORMATION MODEL FOR 2D AND 3D IMAGE SEGMENTATION
    Lenkiewicz, Przemyslaw
    Pereira, Manuela
    Freire, Mario
    Fernandes, Jose
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 4045 - +
  • [4] Document image segmentation using a 2D conditional random field model
    Nicolas, Stephane
    Dardenne, Julien
    Paquet, Thierry
    Heutte, Laurent
    ICDAR 2007: NINTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS I AND II, PROCEEDINGS, 2007, : 407 - +
  • [5] Quadratic markovian probability fields for image binary segmentation
    Rivera, Mariano
    Mayorga, Pedro P.
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 2273 - 2280
  • [6] Markov Random Fields in Image Segmentation
    Kato, Zoltan
    Zerubia, Josiane
    FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2011, 5 (1-2): : 1 - 155
  • [7] Unsupervised Image Segmentation on 2D Echocardiogram
    Cacao, Gabriel Farias
    Du, Dongping
    Nair, Nandini
    Algorithms, 2024, 17 (11)
  • [8] 3D Mesh Segmentation Based on Markov Random Fields and Graph Cuts
    Shi, Zhenfeng
    Le, Dan
    Yu, Liyang
    Niu, Xiamu
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2012, E95D (02): : 703 - 706
  • [9] MARKOVIAN METHOD FOR 2D, 3D AND 4D SEGMENTATION OF MRI
    Jodoin, Pierre-Marc
    Lalande, Alain
    Voisin, Yvon
    Bouchot, Olivier
    Steinmetz, Eric
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 3012 - 3015
  • [10] Interactive Image Segmentation with Conditional Random Fields
    Geng, Xiaowei
    Zhao, Jieyu
    ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 2, PROCEEDINGS, 2008, : 96 - +