Experimental investigation of combined heat recovery and power generation using a heat pipe assisted thermoelectric generator system

被引:102
|
作者
Remeli, Muhammad Fairuz [1 ,2 ]
Date, Abhijit [1 ]
Orr, Bradley [1 ]
Ding, Lai Chet [1 ]
Singh, Baljit [1 ,2 ]
Affandi, Nor Dalila Nor [3 ]
Akbarzadeh, Aliakbar [1 ]
机构
[1] RMIT Univ, Sch Aerosp Mech & Mfg Engn, Energy Conservat & Renewable Energy EnergyCARE Gr, Melbourne, Vic, Australia
[2] Univ Teknol MARA UiTM, Fac Mech Engn, Shah Alam 40450, Selangor, Malaysia
[3] Univ Teknol MARA UiTM, Fac Sci Appl, Shah Alam 40450, Selangor, Malaysia
关键词
Thermoelectric power generator (TEG); Thermoelectric cells; Heat pipes; Waste heat; Industrial heat recovery; Passive heat transfer; LOW-GRADE HEAT; OPTIMIZATION; PERFORMANCE; DRIVEN; DESIGN;
D O I
10.1016/j.enconman.2015.12.032
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper explores a new method of recovering industrial waste heat and conversion to electricity using a Thermo-Electric Generator (TEG). For this purpose, a lab scale bench-top prototype of waste heat recovery and electricity conversion system was designed and fabricated. This bench top system consists of Bismuth Telluride (Bi2Te3) based TEG sandwiched between two heat pipes. The first heat pipe was connected to the hot side of the TEG and the second to the cold side of TEG. The waste heat was simulated by using a 2 kW electric heater for heating the air in the system. Experiments were conducted to evaluate the system performance in terms of the heat transfer rate, heat exchanger effectiveness, and maximum output power. It was found that the highest heat exchanger effectiveness of 41% was achieved when the airspeed was set at 1.1 m/s. The system could recover around 1079 W of heat and produce around 7 W of electric power. This equated to 0.7% of thermal-to-electric conversion efficiency. The theoretical predictions showed good agreement compared to the experimental results. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:147 / 157
页数:11
相关论文
共 50 条
  • [1] Simultaneous power generation and heat recovery using a heat pipe assisted thermoelectric generator system
    Remeli, Muhammad Fairuz
    Tan, Lippong
    Date, Abhijit
    Singh, Baljit
    Akbarzadeh, Aliakbar
    ENERGY CONVERSION AND MANAGEMENT, 2015, 91 : 110 - 119
  • [2] Experimental investigation of a novel heat pipe thermoelectric generator for waste heat recovery and electricity generation
    Tang, Simiao
    Wang, Chenglong
    Liu, Xiao
    Su, Guanghui
    Tian, Wenxi
    Qiu, Suizheng
    Zhang, Qihao
    Liu, Ruiheng
    Bai, Shengqiang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (09) : 7450 - 7463
  • [3] Experimental investigation of heat pipe thermoelectric generator
    Zhao, Yulong
    Fan, Yucong
    Li, Wenjie
    Li, Yanzhe
    Ge, Minghui
    Xie, Liyao
    ENERGY CONVERSION AND MANAGEMENT, 2022, 252
  • [4] Power generation from waste heat using Heat Pipe and Thermoelectric Generator
    Remeli, M. F.
    Kiatbodin, L.
    Singh, B.
    Verojporn, K.
    Date, A.
    Akbarzadeh, A.
    CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 : 645 - 650
  • [5] Passive Heat Recovery System using Combination of Heat Pipe and Thermoelectric Generator
    Remeli, M. F.
    Verojporn, K.
    Singh, B.
    Kiatbodin, L.
    Date, A.
    Akbarzadeh, A.
    CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 : 608 - 614
  • [6] Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery
    Jang, Ju-Chan
    Chi, Ri-Guang
    Rhi, Seok-Ho
    Lee, Kye-Bock
    Hwang, Hyun-Chang
    Lee, Ji-Su
    Lee, Wook-Hyun
    JOURNAL OF ELECTRONIC MATERIALS, 2015, 44 (06) : 2039 - 2047
  • [7] Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery
    Ju-Chan Jang
    Ri-Guang Chi
    Seok-Ho Rhi
    Kye-Bock Lee
    Hyun-Chang Hwang
    Ji-Su Lee
    Wook-Hyun Lee
    Journal of Electronic Materials, 2015, 44 : 2039 - 2047
  • [8] Optimal Number of Thermoelectric Couples in a Heat Pipe Assisted Thermoelectric Generator for Waste Heat Recovery
    Tongjun Liu
    Tongcai Wang
    Weiling Luan
    Qimin Cao
    Journal of Electronic Materials, 2017, 46 : 3137 - 3144
  • [9] Optimal Number of Thermoelectric Couples in a Heat Pipe Assisted Thermoelectric Generator for Waste Heat Recovery
    Liu, Tongjun
    Wang, Tongcai
    Luan, Weiling
    Cao, Qimin
    JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (05) : 3137 - 3144
  • [10] Experimental study on heat pipe thermoelectric generator for industrial high temperature waste heat recovery
    Wang, Chenglong
    Tang, Simiao
    Liu, Xiao
    Su, G. H.
    Tian, Wenxi
    Qiu, Suizheng
    APPLIED THERMAL ENGINEERING, 2020, 175