Twisted symmetric square L-functions for GLn and invariant trilinear forms

被引:0
|
作者
Kaplan, Eyal [1 ,4 ]
Yamana, Shunsuke [2 ,3 ]
机构
[1] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
[2] Hakubi Ctr, Sakyo Ku, Yoshida Honmachi, Kyoto 6068501, Japan
[3] Kyoto Univ, Grad Sch Math, Kyoto 6068502, Japan
[4] Bar Ilan Univ, Dept Math, IL-5290002 Ramat Gan, Israel
基金
欧洲研究理事会;
关键词
Symmetric square L-functions; Exceptional representations; Rankin-Selberg integral representation; Distinguished representations; IRREDUCIBLE REPRESENTATIONS; EISENSTEIN SERIES; ADIC GROUPS; PERIODS; CLASSIFICATION; SPECTRUM;
D O I
10.1007/s00209-016-1726-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following the works of Bump and Ginzburg and of Takeda, we develop a theory of twisted symmetric square L-functions for GL(n). We characterize their pole in terms of certain trilinear period integrals, determine all irreducible summands of the discrete spectrum of GL(n) having nonvanishing trilinear periods, and construct nonzero local invariant trilinear forms on a certain family of induced representations.
引用
收藏
页码:739 / 793
页数:55
相关论文
共 50 条