Extraordinary transition in the two-dimensional O(n) model

被引:4
|
作者
Batchelor, MT [1 ]
Cardy, J [1 ]
机构
[1] UNIV OXFORD,DEPT PHYS,OXFORD OX1 3NP,ENGLAND
基金
英国工程与自然科学研究理事会; 澳大利亚研究理事会; 美国国家科学基金会;
关键词
D O I
10.1016/S0550-3213(97)00533-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The extraordinary transition which occurs in the two-dimensional O(n) model for n < 1 at sufficiently enhanced surface couplings is studied by conformal perturbation theory about infinite coupling and by finite-size scaling of the spectrum of the transfer matrix of a simple lattice model. Unlike the case of n greater than or equal to 1 in higher dimensions, the surface critical behaviour differs from that occurring when fixed boundary conditions are imposed. In fact, all the surface scaling dimensions are equal to those already found for the ordinary transition, with, however, an interesting reshuffling of the corresponding eigenvalues between different sectors of the transfer matrix. (C) 1997 Published by Elsevier Science R.V.
引用
收藏
页码:553 / 564
页数:12
相关论文
共 50 条
  • [1] Two-dimensional O(n) model in a staggered field
    Das, D
    Jacobsen, JL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (06): : 2003 - 2037
  • [2] Global symmetry and conformal bootstrap in the two-dimensional O (N) model
    Grans-Samuelsson, Linnea
    Nivesvivat, Rongvoram
    Jacobsen, Jesper L.
    Ribault, Sylvain
    Saleur, Hubert
    SCIPOST PHYSICS, 2022, 12 (05):
  • [3] Renormalization Group Flow of the Two-Dimensional O(N) Spin Model
    K. R. Ito
    Letters in Mathematical Physics, 2001, 58 : 29 - 40
  • [4] Renormalization group flow of the two-dimensional O(N) spin model
    Ito, KR
    LETTERS IN MATHEMATICAL PHYSICS, 2001, 58 (01) : 29 - 40
  • [5] Special transition and extraordinary phase on the surface of a two-dimensional quantum Heisenberg antiferromagnet
    Ding, Chengxiang
    Zhu, Wenjing
    Guo, Wenan
    Zhang, Long
    SCIPOST PHYSICS, 2023, 15 (01):
  • [6] The localization transition of the two-dimensional Lorentz model
    Bauer, T.
    Hoefling, F.
    Munk, T.
    Frey, E.
    Franosch, T.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 189 (01): : 103 - 118
  • [7] Lifshitz transition in the two-dimensional Hubbard model
    Chen, K. -S.
    Meng, Z. Y.
    Pruschke, T.
    Moreno, J.
    Jarrell, M.
    PHYSICAL REVIEW B, 2012, 86 (16):
  • [8] Phase transition for the two-dimensional Kac model
    Bodineau, T
    HELVETICA PHYSICA ACTA, 1998, 71 (05): : 491 - 517
  • [9] Mott Transition in the Two-Dimensional Hubbard Model
    Kohno, Masanori
    PHYSICAL REVIEW LETTERS, 2012, 108 (07)
  • [10] The localization transition of the two-dimensional Lorentz model
    T. Bauer
    F. Höfling
    T. Munk
    E. Frey
    T. Franosch
    The European Physical Journal Special Topics, 2010, 189 : 103 - 118