Duality, supersymmetry and non-conservative random walks

被引:2
|
作者
Belitsky, V [1 ]
Schuetz, G. M. [2 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[2] Forschungszentrum Julich, Inst Complex Syst 2, D-52425 Julich, Germany
基金
巴西圣保罗研究基金会;
关键词
rigorous results in statistical mechanics; stochastic particle dynamics; exact results; CLASSICAL PROBABILITY-THEORY; REACTION-DIFFUSION PROCESSES; 2-PARAMETER DEFORMATION; QUANTUM OPERATORS; SYMMETRIES; DYNAMICS; MODELS; CHAIN;
D O I
10.1088/1742-5468/ab14d6
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We derive a probabilistic interpretation of the observation that the quantum XY chain is supersymmetric in the sense that the Hamiltonian commutes with the generators of a subalgebra of the universal enveloping algebra of the Lie superalgebra sl(1 vertical bar 1) and its deformations. The XY chain is shown to be the generator of a Markov process that describes classical vicious random walkers that annihilate immediately when they arrive on the same site, while new random walkers are created at neighbouring sites. The supersymmetry leads to a probabilistic self-duality relation and a duality between the random walk model with an even and odd number of particles, respectively.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] DUALITY IN A NON-CONSERVATIVE SYSTEM
    ANDERSON, GL
    [J]. JOURNAL OF SOUND AND VIBRATION, 1975, 41 (02) : 155 - 161
  • [2] A note on conservative and non-conservative coupling
    Fredö, CR
    [J]. IUTAM SYMPOSIUM ON STATISTICAL ENERGY ANALYSIS, 1999, 67 : 95 - 106
  • [4] Tautochronous vibrations in conservative and non-conservative systems
    Koukles, I
    Piskounov, N
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1937, 17 : 471 - 475
  • [5] Non-conservative gravitational equations
    Mignani, R
    Pessa, E
    Resconi, G
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1997, 29 (08) : 1049 - 1073
  • [6] Non-conservative fundamental particles
    Proca, A
    [J]. NATURE, 1944, 154 : 674 - 674
  • [7] Fluctuations of non-conservative systems
    Leporini, Dino
    Mauri, Roberto
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [8] Non-Conservative Gravitational Equations
    R. Mignani
    E. Pessa
    G. Resconi
    [J]. General Relativity and Gravitation, 1997, 29 : 1049 - 1073
  • [9] Dynamics of non-conservative voters
    Lambiotte, R.
    Redner, S.
    [J]. EPL, 2008, 82 (01)
  • [10] On non-conservative plan modification
    Liberatore, P
    [J]. ECAI 1998: 13TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 1998, : 518 - 519