Harnack inequality for a class of Kolmogorov-Fokker-Planck equations in non-divergence form

被引:13
|
作者
Abedin, Farhan [1 ]
Tralli, Giulio [2 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48823 USA
[2] Univ Padua, Dipartimento Ingn Civile & Ambientale DICEA, Via Marzolo 9, I-35131 Padua, Italy
关键词
D O I
10.1007/s00205-019-01370-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove invariant Harnack inequalities for certain classes of non-divergence form equations of Kolmogorov type. The operators we consider exhibit invariance properties with respect to a homogeneous Lie group structure. The coefficient matrix is assumed either to satisfy a Cordes-Landis condition on the eigenvalues, or to admit a uniform modulus of continuity.
引用
收藏
页码:867 / 900
页数:34
相关论文
共 50 条