Electrochemical Hydrogen Separation via Solid Acid Membranes

被引:14
|
作者
Papandrew, Alexander B. [1 ]
Wilson, David L., III [1 ]
Cantillo, Nelly M. [1 ]
Hawks, Samantha [1 ]
Atkinson, Robert W., III [1 ]
Goenaga, Gabriel A. [1 ]
Zawodzinski, Thomas A., Jr. [1 ,2 ,3 ]
机构
[1] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
[3] King Abdulaziz Univ, Dept Chem, Jeddah 21413, Saudi Arabia
关键词
ELECTROLYTE FUEL-CELL; EVOLUTION REACTIONS; PROTON CONDUCTORS; CARBON-MONOXIDE; CO; OXIDATION; STEAM; ELECTROOXIDATION; PERFORMANCE; REFORMATE;
D O I
10.1149/2.078405jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The inorganic proton conductor CsH2PO4 (CDP) was investigated as a proton exchange membrane for electrochemical hydrogen separation at temperatures from 230 degrees C to 250 degrees C. Carbon-supported Pt and Pd were synthesized via vapor deposition and evaluated as hydrogen oxidation catalysts in hydrogen pump electrodes. The hydrogen oxidation and evolution reactions were reversible on Pt in 100% H-2, and a cell current of 300 mA cm(-2) was produced at a 25 mV overpotential after correction for the membrane ohmic resistance. Anodes were also exposed to hydrogen-containing gas mixtures to simulate reformed fuels. In the case of a stream containing 7% CO (75% H-2, balance CO2), a 300 mA cm(-2) cell current required 45 mV electrode polarization, and in a stream containing 10% CO and 0.25% CH4 (43% H-2, balance N-2, CO2), 75 mV polarization was required to obtain the same current. The performance of carbon-supported Pd was virtually identical to that of Pt under each of these conditions. (C) 2014 The Electrochemical Society. All rights reserved.
引用
收藏
页码:F679 / F685
页数:7
相关论文
共 50 条
  • [1] Electrochemical Hydrogen Separation Via Solid Acid Membranes
    Papandrew, Alexander B.
    Wilson, David L.
    Hawks, Samantha
    Goenaga, Gabriel A.
    Zawodzinski, Thomas A., Jr.
    ELECTROCHEMICAL SYNTHESIS OF FUELS 2, 2013, 58 (02): : 33 - 38
  • [2] Hydrogen production by electrochemical decomposition of formic acid via solid polymer electrolyte
    Kilic, Ebru Oender
    Koparal, Ali Savas
    Oeguetveren, Uelker Bakir
    FUEL PROCESSING TECHNOLOGY, 2009, 90 (01) : 158 - 163
  • [3] Electrochemical oxygen separation using solid electrolyte ion transport membranes
    Meixner, DL
    Brengel, DD
    Henderson, BT
    Abrardo, JM
    Wilson, MA
    Taylor, DM
    Cutler, RA
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) : D132 - D136
  • [4] Electrochemical oxygen separation using solid electrolyte ion transport membranes
    Meixner, DL
    Brengel, DD
    Henderson, BT
    Abrardo, JM
    Wilson, MA
    Taylor, DM
    IONIC AND MIXED CONDUCTING CERAMICS IV, 2002, 2001 (28): : 328 - 338
  • [5] Advanced hydrogen separation via thin supported Pd membranes
    Booth, JCS
    Doyle, ML
    Gee, SM
    Miller, J
    Scholtz, LA
    Walker, PA
    HYDROGEN ENERGY PROGRESS XI, VOLS 1-3, 1996, : 867 - 878
  • [6] Hydrogen separation via proton conducting ceramic membranes: A review
    Cheng, Siqin
    Li, Xinglong
    Huang, Xiaozhong
    Ling, Yeqing
    Liu, Shaomin
    Li, Tao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 70 : 654 - 665
  • [7] Membranes for hydrogen separation
    Ockwig, Nathan W.
    Nenoff, Tina M.
    CHEMICAL REVIEWS, 2007, 107 (10) : 4078 - 4110
  • [8] SELECTIVE MEMBRANES FOR HYDROGEN SEPARATION
    Girdzevicius, Dalius
    3RD INTERNATIONAL CONFERENCE RADIATION INTERACTION WITH MATERIAL AND ITS USE IN TECHNOLOGIES 2010, 2010, : 367 - 370
  • [9] Inorganic Membranes for Hydrogen Separation
    Cardoso, Simao P.
    Azenha, Ivo S.
    Lin, Zhi
    Portugal, Ines
    Rodrigues, Alirio E.
    Silva, Carlos M.
    SEPARATION AND PURIFICATION REVIEWS, 2018, 47 (03): : 229 - 266
  • [10] Solid Acid Electrochemical Cell for the Production of Hydrogen from Ammonia
    Lim, Dae-Kwang
    Plymill, Austin B.
    Paik, Haemin
    Qian, Xin
    Zecevic, Strahinja
    Chisholm, Calum R., I
    Haile, Sossina M.
    JOULE, 2020, 4 (11) : 2338 - 2347