Self-cooling of a micromirror by radiation pressure

被引:775
|
作者
Gigan, S.
Boehm, H. R.
Paternostro, M.
Blaser, F.
Langer, G.
Hertzberg, J. B.
Schwab, K. C.
Baeuerle, D.
Aspelmeyer, M.
Zeilinger, A.
机构
[1] Univ Vienna, Fac Phys, Inst Expt Phys, A-1090 Vienna, Austria
[2] Austrian Acad Sci, IQOQI, A-1090 Vienna, Austria
[3] Johannes Kepler Univ Linz, Inst Appl Phys, A-4040 Linz, Austria
[4] Univ Maryland, Lab Phys Sci, College Pk, MD 20740 USA
[5] Univ Maryland, Dept Phys, College Pk, MD 20740 USA
基金
奥地利科学基金会;
关键词
D O I
10.1038/nature05273
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cooling of mechanical resonators is currently a popular topic in many fields of physics including ultra-high precision measurements(1), detection of gravitational waves(2,3) and the study of the transition between classical and quantum behaviour of a mechanical system(4-6). Here we report the observation of self-cooling of a micromirror by radiation pressure inside a high-finesse optical cavity. In essence, changes in intensity in a detuned cavity, as caused by the thermal vibration of the mirror, provide the mechanism for entropy flow from the mirror's oscillatory motion to the low-entropy cavity field(2). The crucial coupling between radiation and mechanical motion was made possible by producing freestanding micromirrors of low mass (m approximate to 400 ng), high reflectance ( more than 99.6%) and high mechanical quality (Q approximate to 10,000). We observe cooling of the mechanical oscillator by a factor of more than 30; that is, from room temperature to below 10 K. In addition to purely photothermal effects(7) we identify radiation pressure as a relevant mechanism responsible for the cooling. In contrast with earlier experiments, our technique does not need any active feedback(8-10). We expect that improvements of our method will permit cooling ratios beyond 1,000 and will thus possibly enable cooling all the way down to the quantum mechanical ground state of the micromirror.
引用
收藏
页码:67 / 70
页数:4
相关论文
共 50 条
  • [1] Self-cooling of a micromirror by radiation pressure
    S. Gigan
    H. R. Böhm
    M. Paternostro
    F. Blaser
    G. Langer
    J. B. Hertzberg
    K. C. Schwab
    D. Bäuerle
    M. Aspelmeyer
    A. Zeilinger
    Nature, 2006, 444 : 67 - 70
  • [2] Radiation-pressure self-cooling of a micromirror in a cryogenic environment
    Groeblacher, S.
    Gigan, S.
    Boehm, H. R.
    Zeilinger, A.
    Aspelmeyer, M.
    EPL, 2008, 81 (05)
  • [3] Self-cooling of a movable mirror to the ground state using radiation pressure
    Dantan, A.
    Genes, C.
    Vitali, D.
    Pinard, M.
    PHYSICAL REVIEW A, 2008, 77 (01)
  • [4] Self-cooling microchips
    Greene, Kate
    TECHNOLOGY REVIEW, 2006, 109 (05): : 22 - 22
  • [5] Radiation-pressure cooling and optomechanical instability of a micromirror
    O. Arcizet
    P.-F. Cohadon
    T. Briant
    M. Pinard
    A. Heidmann
    Nature, 2006, 444 : 71 - 74
  • [6] Radiation-pressure cooling and optomechanical instability of a micromirror
    Arcizet, O.
    Cohadon, P. -F.
    Briant, T.
    Pinard, M.
    Heidmann, A.
    NATURE, 2006, 444 (7115) : 71 - 74
  • [7] Self-cooling trash
    Budd, L
    NEW SCIENTIST, 2004, 182 (2449) : 31 - 31
  • [8] Self-Cooling on Germanium Chip
    Wang, Peng
    Bar-Cohen, Avram
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2011, 1 (05): : 705 - 713
  • [9] The self-cooling Kromayer lamp
    Kromayer
    DERMATOLOGISCHE WOCHENSCHRIFT, 1932, 95 (27/52): : 1681 - 1683
  • [10] A Self-cooling Bit with Transpiration Cooling Structures
    Cao, Tong
    Yu, Kaian
    Din, Kun
    Liu, Yubo
    Chen, Xuyue
    Zhu, Hongwu
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (09) : 11007 - 11019