A two-step phase-shifting algorithm dedicated to fringe projection profilometry

被引:11
|
作者
Yin, Yongkai [1 ]
Mao, Jiaqi [1 ]
Meng, Xiangfeng [1 ]
Yang, Xiulun [1 ]
Wu, Ke [2 ]
Xi, Jiangtao [3 ]
Sun, Baoqing [1 ]
机构
[1] Shandong Univ, Sch Informat Sci & Engn, Shandong Prov Key Lab Laser Technol & Applicat, Qingdao 266237, Peoples R China
[2] Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan 430079, Peoples R China
[3] Univ Wollongong, Sch Elect Comp & Telecommun Engn, Wollongong, NSW 2522, Australia
关键词
Two-step phase-shifting; Fringe projection profilometry (FPP); Phase error; 3D measurement; Fourier transform profilometry (FTP); 3-DIMENSIONAL SHAPE MEASUREMENT; FOURIER-TRANSFORM PROFILOMETRY; HIGH-SPEED; 3D; PATTERNS; ERROR;
D O I
10.1016/j.optlaseng.2020.106372
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Improving the time efficiency of fringe projection profilometry (FPP) is an attractive problem. For FPP using phase-shifting, it is desired to improve the efficiency by reducing the step number for phase retrieval. This paper proposes a two-step phase-shifting algorithm dedicated to FPP. Considering the physical process of FPP, the captured fringe image is formulated with two variables, i.e. surface reflectance and phase value. And a phase shift is introduced to get the two equations, which lead to the close-form solution for phase calculation. Then the phase error due to ambient light is analyzed via a line-circle model, and an algorithm of refining the phase calculation is proposed based on the estimation of the actual fringe contrast. The validity of the proposed approach is demonstrated with experiments.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Two-step phase-shifting fringe projection profilometry: intensity derivative approach
    Yang, Fujun
    He, Xiaoyuan
    [J]. APPLIED OPTICS, 2007, 46 (29) : 7172 - 7178
  • [2] Two-step phase-shifting in fringe projection: Modeling and analysis
    Mao, Jiaqi
    Yin, Yongkai
    Meng, Xiangfeng
    Yang, Xiulun
    Lu, Lei
    Li, Dechun
    Pape, Christian
    Reithmeier, Eduard
    [J]. OPTICAL MICRO- AND NANOMETROLOGY VII, 2018, 10678
  • [3] An improved two-step phase-shifting profilometry
    Liu YePeng
    Du Guangliang
    Zhang ChaoRui
    Zhou CanLin
    Si ShuChun
    Lei Zhenkun
    [J]. OPTIK, 2016, 127 (01): : 288 - 291
  • [4] Two-step phase-shifting algorithm
    Almazán-Cuéllar, S
    Malacara-Hernández, D
    [J]. OPTICAL ENGINEERING, 2003, 42 (12) : 3524 - 3531
  • [5] Quasi-pointwise two-step phase-shifting profilometry with the fringe parameters estimated statistically
    Wang, Hanwen
    Zhu, Huijie
    Guo, Hongwei
    [J]. APPLIED OPTICS, 2023, 62 (22) : 5850 - 5860
  • [6] Gamma correction for two step phase shifting fringe projection profilometry
    Zheng, Dongliang
    Da, Feipeng
    [J]. OPTIK, 2013, 124 (13): : 1392 - 1397
  • [7] A Two-step Phase-shifting Algorithm for Phase Calculation
    [J]. Zhang, Zong-Hua (zhzhang@hebut.edu.cn), 1600, Chinese Optical Society (46):
  • [8] Generalized 2-step phase-shifting algorithm for fringe projection
    Yin, Zhuoyi
    Du, Yifang
    She, Peiyun
    He, Xiaoyuan
    Yang, Fujun
    [J]. OPTICS EXPRESS, 2021, 29 (09) : 13141 - 13152
  • [9] Phase-Shifting Temporal Phase Unwrapping Algorithm for High-Speed Fringe Projection Profilometry
    An, Haihua
    Cao, Yiping
    Zhang, Ying
    Li, Hongmei
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [10] Single-shot 4-step phase-shifting multispectral fringe projection profilometry
    Omidi, Parsa
    Najiminaini, Mohamadreza
    Diop, Mamadou
    Carson, Jeffrey J. L.
    [J]. OPTICS EXPRESS, 2021, 29 (18): : 27975 - 27988