Fermat's variational principle for anisotropic inhomogeneous media

被引:27
|
作者
Cerveny, V [1 ]
机构
[1] Charles Univ, Dept Geophys, Prague, Czech Republic
关键词
Fermat's principle; anisotropic media; Lagrangian; Hamiltonian; Finsler space; wave propagation metric tensor;
D O I
10.1023/A:1019599204028
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Fermat's variational principle states that the signal propagates from point S to R along a curve which renders Fermat's functional calI(l) stationary. Fermat's functional I(l) depends on curves l which connect points S and R, and represents the travel times from S to R along l. In seismology, it is mostly expressed by the integral I(l) = integral(S)(R)L(x(k),x(k)')du, taken along curve l, where L(x(k),x(k)') is the relevant Lagrangian, x(k) are coordinates, u is a parameter used to specify the position of points along l, and x(k)' = dx(k)/du. If Lagrangian L(x(k),x(k)') is a homogeneous function of the first degree in x(k)', Fermat's principle is valid for arbitrary monotonic parameter u. We than speak of the first-degree Lagrangian L(()1)(x(k),x(k)'). It is shown that the conventional Legendre transform cannot be applied to the first-degree Lagrangian L(()1)(x(k),x(k)') to derive the relevant Hamiltonian H-(1)(x(k),p(k)), and Hamiltonian ray equations. The reason is that the Hessian determinant of the transform vanishes identically for first-degree Lagrangians L(()1)(x(k),x(k)'). The Lagrangians must be modified so that the Hessian determinant is different from zero. A modification to overcome this difficulty is proposed in this article, and is based on second-degree Lagrangians L(()2). Parameter u along the curves is taken to correspond to travel time tau, and the second-degree Lagrangian L-(2)(x(k),(x) over dot(k)) is then introduced by the relation L-(2)(x(k),(x) over dot(k)) = 1/2[L-(1)(x(k),(x) over dot(k))](2), with (x) over dot(k) = dx(k)/dtau. The second-degree Lagrangian L-(2)(x(k),(x) over dot(k)) yields the same Euler/Lagrange equations for rays as the first-degree Lagrangian L-(1)(x(k),(x) over dot(k)). The relevant Hessian determinant, however, does not vanish identically. Consequently, the Legendre transform can then be used to compute Hamiltonian H-(2)(x(k),p(k)) from Lagrangian L-(2)(x(k),(x) over dot(k)), and vice versa, and the Hamiltonian canonical equations can be derived from the Euler-Lagrange equations. Both L-(2)(x(k),(x) over dot(k)) and H-(2)(x(k),p(k)) can be expressed in terms of the wave propagation metric tensor g(ij)(x(k),(x) over dot(k)), which depends not only on position x(k), but also on the direction of vector (x) over dot(k). It is defined in a Finsler space, in which the distance is measured by the travel time. It is shown that the standard form of the Hamiltonian, derived from the elastodynamic equation and representing the eikonal equation, which has been broadly used in the seismic ray method, corresponds to the second-degree Lagrangian L-(2)(x(k),(x) over dot(k)), not to the first-degree Lagrangian L-(1)(x(k),(x) over dot(k)). It is also shown that relations L-(2)(x(k),(x) over dot(k)) = 1/2 and H-(2)(x(k),p(k)) = 1/2 are valid at any point of the ray and that they represent the group velocity surface and the slowness surface, respectively. All procedures and derived equations are valid for g To make certain procedures and equations more transparent and objective, the simpler cases of isotropic and ellipsoidally anisotropic media are briefly discussed as special cases.
引用
收藏
页码:567 / 588
页数:22
相关论文
共 50 条
  • [1] Fermat's Variational Principle for Anisotropic Inhomogeneous Media
    Vlastislav Červený
    [J]. Studia Geophysica et Geodaetica, 2002, 46 : 567 - 588
  • [2] On application of Fermat's principle to anisotropic media
    Rudzki, MP
    [J]. ANISOTROPY 2000: FRACTURES, CONVERTED WAVES AND CASE STUDIES, 2001, (06): : 13 - 20
  • [3] Presymplectic geometry and Fermat's principle for anisotropic media
    Carinena, JF
    Nasarre, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (08): : 1695 - 1702
  • [4] The application of Fermat's principle for imaging anisotropic and inhomogeneous media with application to austenitic steel weld inspection
    Connolly, George D.
    Lowe, Michael J. S.
    Temple, J. Andrew G.
    Rokhlin, Stanislav I.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2111): : 3401 - 3423
  • [5] On Fermat's principle and Snell's law in lossy anisotropic media
    Carcione, Jose M.
    Ursin, Bjorn
    [J]. GEOPHYSICS, 2016, 81 (03) : T107 - T116
  • [6] Asymptotic Theory of Classical Impurity Transport in Inhomogeneous Media. Fermat's Principle
    Kondratenko, P. S.
    Mukharyapova, A. V.
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2022, 135 (05) : 714 - 719
  • [7] Asymptotic Theory of Classical Impurity Transport in Inhomogeneous Media. Fermat’s Principle
    P. S. Kondratenko
    A. V. Mukharyapova
    [J]. Journal of Experimental and Theoretical Physics, 2022, 135 : 714 - 719
  • [8] Fermat's principle for seismic rays in elastic media
    Bóna, A
    Slawinski, MA
    [J]. JOURNAL OF APPLIED GEOPHYSICS, 2003, 54 (3-4) : 445 - 451
  • [9] COMPLEX RAY IN ANISOTROPIC SOLIDS: EXTENDED FERMAT'S PRINCIPLE
    Deschamps, Marc
    Poncelet, Olivier
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (06): : 1623 - 1633