General Limit Distributions for Sums of Random Variables with a Matrix Product Representation

被引:2
|
作者
Angeletti, Florian [1 ,2 ]
Bertin, Eric [3 ]
Abry, Patrice [4 ]
机构
[1] Natl Inst Theoret Phys NITheP, ZA-7600 Stellenbosch, South Africa
[2] Univ Stellenbosch, Inst Theoret Phys, ZA-7600 Stellenbosch, South Africa
[3] Univ Grenoble 1, CNRS UMR 5588, Lab Interdisciplinaire Phys, F-38402 St Martin Dheres, France
[4] Univ Lyon, CNRS, ENS Lyon, Lab Phys, F-69007 Lyon, France
关键词
Limit distribution; Statistics of sums; Matrix product ansatz; Hidden Markov model; Non-Gaussian distributions; FINITE-DIMENSIONAL REPRESENTATIONS; ASYMMETRIC EXCLUSION MODEL; ANOMALOUS DIFFUSION; QUADRATIC ALGEBRA; TIME-SERIES; STATES; FLUCTUATIONS;
D O I
10.1007/s10955-014-1111-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The general limit distributions of the sum of random variables described by a finite matrix product ansatz are characterized. Using a mapping to a Hidden Markov Chain formalism, non-standard limit distributions are obtained, and related to a form of ergodicity breaking in the underlying non-homogeneous Hidden Markov Chain. The link between ergodicity and limit distributions is detailed and used to provide a full algorithmic characterization of the general limit distributions.
引用
收藏
页码:1255 / 1283
页数:29
相关论文
共 50 条