Conductor Specification and Validation for High-Luminosity LHC Quadrupole Magnets

被引:33
|
作者
Cooley, L. D. [1 ]
Ghosh, A. K. [2 ]
Dietderich, D. R. [3 ,4 ]
Pong, I. [3 ]
机构
[1] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
[2] Brookhaven Natl Lab, Upton, NY 11973 USA
[3] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[4] Walnut Creek, Walnut Creek, CA 94598 USA
关键词
Critical current; magnet conductors; Nb-3 Sn-niobiumtin superconductors; quadrupole magnets; residual resistance ratio (RRR); NB3SN;
D O I
10.1109/TASC.2017.2648738
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The high-luminosity upgrade of the large hadron collider (HL-LHC) at CERN will replace the main ring inner triplet quadrupoles, identified by the acronym MQXF, adjacent to the main ring intersection regions. For the past decade, the U.S. LHC Accelerator R&D Program, LARP, has been evaluating conductors for the MQXFA prototypes, which are the outer magnets of the triplet. Recently, the requirements for MQXF magnets and cables have been published in [P. Ferracin et al., IEEE Trans. Appl. Supercond., vol. 26, no. 4, Jun. 2016, Art. no. 4000207], along with the final specification for Ti-alloyed Nb3Sn conductor determined jointly by CERN and LARP. This paper describes the rationale beneath the 0.85-mm-diameter strand's chief parameters, which are 108 or more subelements, a copper fraction not less than 52.4%, strand critical current at 4.22 K not less than 631 A at 12 T and 331 A at 15 T, and residual resistance ratio of not less than 150. This paper also compares the performance for similar to 100 km production lots of the five most recent LARP conductors to the first 163 km of strand made according to theHL-LHCspecification. Two factors emerge as significant for optimizing performance and minimizing risk: a modest increase of the subelement diameter from 50 to 55 mu m, and a Nb: Sn molar ratio of 3.6 instead of 3.4. The statistics acquired so far give confidence that the present conductor can balance competing demands in production for the HL-LHC project.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Magnetic Analysis of the MQXF Quadrupole for the High-Luminosity LHC
    Izquierdo Bermudez, Susana
    Fiscarelli, Lucio
    Ambrosio, Giorgio
    Bajas, Hugues
    Chlachidze, Guram
    Ferracin, Paolo
    DiMarco, Joseph
    Stoynev, Stoyan Emilov
    Todesco, Ezio
    Sabbi, GianLuca
    Vallone, Giorgio
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2019, 29 (05)
  • [2] High-Luminosity LHC
    Rossi, L.
    [J]. FUTURE RESEARCH INFRASTRUCTURES: CHALLENGES AND OPPORTUNITIES, 2016, 194 : 61 - 72
  • [3] Prospects for the high-luminosity LHC
    Jezequel, S.
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2013, 245 : 145 - 148
  • [4] Electroweak measurements at the High-Luminosity LHC
    Savin, Alexander
    [J]. 7TH ANNUAL CONFERENCE ON LARGE HADRON COLLIDER PHYSICS, LHCP2019, 2019,
  • [5] VHH production at the high-luminosity LHC
    Karl Nordström
    Andreas Papaefstathiou
    [J]. The European Physical Journal Plus, 134
  • [6] VHH production at the high-luminosity LHC
    Nordstrom, Karl
    Papaefstathiou, Andreas
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06):
  • [7] Application of the Universal Quench Detection System to the Protection of the High-Luminosity LHC Magnets at CERN
    Steckert, Jens
    Denz, Reiner
    Mundra, Surbhi
    Podzorny, Tomasz
    Spasic, Jelena
    Vancea, Dragos-Gabriel
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2022, 32 (06)
  • [8] Heavy neutral fermions at the high-luminosity LHC
    Helo, Juan Carlos
    Hirsch, Martin
    Wang, Zeren Simon
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (07):
  • [9] The Forward Physics Facility at the High-Luminosity LHC
    Feng, Jonathan L.
    Kling, Felix
    Reno, Mary Hall
    Rojo, Juan
    Soldin, Dennis
    Anchordoqui, Luis A.
    Boyd, Jamie
    Ismail, Ahmed
    Harland-Lang, Lucian
    Kelly, Kevin J.
    Pandey, Vishvas
    Trojanowski, Sebastian
    Tsai, Yu-Dai
    Alameddine, Jean-Marco
    Araki, Takeshi
    Ariga, Akitaka
    Ariga, Tomoko
    Asai, Kento
    Bacchetta, Alessandro
    Balazs, Kincso
    Barr, Alan J.
    Battistin, Michele
    Bian, Jianming
    Bertone, Caterina
    Bai, Weidong
    Bakhti, Pouya
    Balantekin, A. Baha
    Barman, Basabendu
    Batell, Brian
    Bauer, Martin
    Bauer, Brian
    Becker, Mathias
    Berlin, Asher
    Bertuzzo, Enrico
    Bhattacharya, Atri
    Bonvini, Marco
    Boogert, Stewart T.
    Boyarsky, Alexey
    Bramante, Joseph
    Brdar, Vedran
    Carmona, Adrian
    Casper, David W.
    Celiberto, Francesco Giovanni
    Cerutti, Francesco
    Chachamis, Grigorios
    Chauhan, Garv
    Citron, Matthew
    Copello, Emanuele
    Corso, Jean-Pierre
    Darme, Luc
    [J]. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2023, 50 (03)
  • [10] The CMS Outer Tracker for the High-Luminosity LHC
    Butz, Erik
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2020, 958