On the global existence of columnar solutions of the Navier-Stokes equations

被引:0
|
作者
Kim, Namkwon [1 ]
Lkhagvasuren, Bataa [1 ]
机构
[1] Chosun Univ, Dept Math, Gwangju 501759, South Korea
关键词
Navier-Stokes equations; columnar flow; global existence; blow-up solution; EULER;
D O I
10.1088/1361-6544/aabc8d
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider columnar solutions of the three dimensional incompressible Navier-Stokes equations in a slab type domain. We call the solution u a columnar flow when u = (u(1), u(2), u(3)) = (u(1)(x(1), x(2), t), u(2)(x(1), x(2), t), x(3) gamma(x(1), x(2), t)+ phi(x(1), x(2), t)) for some scalar function gamma and phi In this paper, we obtain the global existence of columnar flows in Sobolev spaces if partial derivative(3)u(3)(x(1), x(2), 0) is nonnegative. We also show that a solution blows up in finite time if the initial data partial derivative(3)u(3)(x(1), x(2), 0) is radial and the negative part of partial derivative(3)u(3)(x(1), x(2), 0) is dominant. Furthermore, we present nontrivial exact blow-up solutions. These exact solutions blow up at every point of the domain and the blow-up rate of these solutions in the W-1,W-p norm for 1 < p < infinity is (T -t)(-1) near the blow-up time t = T > 0.
引用
收藏
页码:3308 / 3325
页数:18
相关论文
共 50 条