On the computational hardness of learning from structured symbolic data

被引:0
|
作者
Jappy, P
Gascuel, O
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present general learnability results for structural representations, with applications to Description Logics. We first extend three existing Boolean formula classes to an arbitrary structural language, then propose a generalization of the PAC learnability model (Valiant 1984) in order to handle non Boolean formalisms. After showing the consistency of our definitions with the originals, we give properties on the extension language which are sufficient to ensure the learnability of the extended classes, and finally give a practical example by choosing Description Logics as the extension language.
引用
收藏
页码:189 / 200
页数:12
相关论文
共 50 条
  • [1] On the hardness of learning queries from tree structured data
    Liu, Xianmin
    Li, Jianzhong
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 29 (03) : 670 - 684
  • [2] On the hardness of learning queries from tree structured data
    Xianmin Liu
    Jianzhong Li
    [J]. Journal of Combinatorial Optimization, 2015, 29 : 670 - 684
  • [3] Learning from data with structured missingness
    Robin Mitra
    Sarah F. McGough
    Tapabrata Chakraborti
    Chris Holmes
    Ryan Copping
    Niels Hagenbuch
    Stefanie Biedermann
    Jack Noonan
    Brieuc Lehmann
    Aditi Shenvi
    Xuan Vinh Doan
    David Leslie
    Ginestra Bianconi
    Ruben Sanchez-Garcia
    Alisha Davies
    Maxine Mackintosh
    Eleni-Rosalina Andrinopoulou
    Anahid Basiri
    Chris Harbron
    Ben D. MacArthur
    [J]. Nature Machine Intelligence, 2023, 5 : 13 - 23
  • [4] Learning from data with structured missingness
    Mitra, Robin
    McGough, Sarah F.
    Chakraborti, Tapabrata
    Holmes, Chris
    Copping, Ryan
    Hagenbuch, Niels
    Biedermann, Stefanie
    Noonan, Jack
    Lehmann, Brieuc
    Shenvi, Aditi
    Doan, Xuan Vinh
    Leslie, David
    Bianconi, Ginestra
    Sanchez-Garcia, Ruben
    Davies, Alisha
    Mackintosh, Maxine
    Andrinopoulou, Eleni-Rosalina
    Basiri, Anahid
    Harbron, Chris
    MacArthur, Ben D.
    [J]. NATURE MACHINE INTELLIGENCE, 2023, 5 (01) : 13 - 23
  • [5] Symbolic Task Compression in Structured Task Learning
    Saveriano, Matteo
    Seegerer, Michael
    Caccavale, Riccardo
    Finzi, Alberto
    Lee, Dongheui
    [J]. 2019 THIRD IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING (IRC 2019), 2019, : 171 - 176
  • [6] Symbolic Abstractions From Data: A PAC Learning Approach
    Devonport, Alex
    Saoud, Adnane
    Arcak, Murat
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 599 - 604
  • [7] Learning comprehensible theories from structured data
    Lloyd, JW
    [J]. ADVANCED LECTURES ON MACHINE LEARNING, 2002, 2600 : 203 - 225
  • [8] Learning from highly structured data by decomposition
    Mac Kinney-Romero, R
    Giraud-Carrier, C
    [J]. PRINCIPLES OF DATA MINING AND KNOWLEDGE DISCOVERY, 1999, 1704 : 436 - 441
  • [9] Learning structured data from unspecific reinforcement
    Biehl, M
    Kühn, R
    Stamatescu, IO
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (39): : 6843 - 6857
  • [10] Origin of the computational hardness for learning with binary synapses
    Huang, Haiping
    Kabashima, Yoshiyuki
    [J]. PHYSICAL REVIEW E, 2014, 90 (05):