Symmetry prediction and knowledge discovery from X-ray diffraction patterns using an interpretable machine learning approach

被引:63
|
作者
Suzuki, Yuta [1 ,2 ]
Hino, Hideitsu [3 ]
Hawai, Takafumi [1 ]
Saito, Kotaro [1 ,4 ,5 ]
Kotsugi, Masato [6 ]
Ono, Kanta [1 ,2 ]
机构
[1] High Energy Accelerator Res Org KEK, Inst Mat Struct Sci, Tsukuba, Ibaraki 3050801, Japan
[2] Grad Univ Adv Studies SOKENDAI, Sch High Energy Accelerator Sci, Tsukuba, Ibaraki 3050801, Japan
[3] Inst Stat Math, Tokyo 1900014, Japan
[4] Paul Scherrer Inst PSI, CH-5232 Villigen, Switzerland
[5] Medley Inc, Tokyo 1066222, Japan
[6] Tokyo Univ Sci, Dept Mat Sci & Technol, Tokyo 1258585, Japan
基金
欧盟地平线“2020”;
关键词
UNIT-CELL; DATA AUGMENTATION; POWDER; CLASSIFICATION; REFINEMENT; PROGRAM; DESIGN;
D O I
10.1038/s41598-020-77474-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Determination of crystal system and space group in the initial stages of crystal structure analysis forms a bottleneck in material science workflow that often requires manual tuning. Herein we propose a machine-learning (ML)-based approach for crystal system and space group classification based on powder X-ray diffraction (XRD) patterns as a proof of concept using simulated patterns. Our tree-ensemble-based ML model works with nearly or over 90% accuracy for crystal system classification, except for triclinic cases, and with 88% accuracy for space group classification with five candidates. We also succeeded in quantifying empirical knowledge vaguely shared among experts, showing the possibility for data-driven discovery of unrecognised characteristics embedded in experimental data by using an interpretable ML approach.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Symmetry prediction and knowledge discovery from X-ray diffraction patterns using an interpretable machine learning approach
    Yuta Suzuki
    Hideitsu Hino
    Takafumi Hawai
    Kotaro Saito
    Masato Kotsugi
    Kanta Ono
    [J]. Scientific Reports, 10
  • [2] Harnessing interpretable and unsupervised machine learning to address big data from modern X-ray diffraction
    Venderley, Jordan
    Mallayya, Krishnanand
    Matty, Michael
    Krogstad, Matthew
    Ruff, Jacob
    Pleiss, Geoff
    Kishore, Varsha
    Mandrus, David
    Phelan, Daniel
    Poudel, Lekhanath
    Wilson, Andrew Gordon
    Weinberger, Kilian
    Upreti, Puspa
    Norman, Michael
    Rosenkranz, Stephan
    Osborn, Raymond
    Kim, Eun-Ah
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (24)
  • [3] Interpretable structure-property correlation in X-ray diffraction patterns of HfZrO thin films via machine learning
    Feng, Lei
    Nakamura, Takahiro
    Ni, Zeyuan
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2024, 63 (04)
  • [4] Crystal symmetry classification from powder X-ray diffraction patterns using a convolutional neural network
    Zaloga, Alexander N.
    Stanovov, Vladimir V.
    Bezrukova, Oksana E.
    Dubinin, Petr S.
    Yakimov, Igor S.
    [J]. MATERIALS TODAY COMMUNICATIONS, 2020, 25
  • [5] MACHINE LEARNING AUTOMATES X-RAY DIFFRACTION ANALYSIS
    不详
    [J]. ADVANCED MATERIALS & PROCESSES, 2023, 181 (03): : 10 - 12
  • [6] Powder X-Ray Diffraction Pattern Is All You Need for Machine-Learning-Based Symmetry Identification and Property Prediction
    Lee, Byung Do
    Lee, Jin-Woong
    Park, Woon Bae
    Park, Joonseo
    Cho, Min-Young
    Singh, Satendra Pal
    Pyo, Myoungho
    Sohn, Kee-Sun
    [J]. ADVANCED INTELLIGENT SYSTEMS, 2022, 4 (07)
  • [7] AN APPROACH TO INDEXING OF X-RAY POWDER DIFFRACTION PATTERNS
    ARTHUR, P
    [J]. ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1964, 120 (06): : 415 - &
  • [8] X-RAY DIFFRACTION PATTERNS FROM MUSCLE
    WORTHINGTON, CR
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA, 1956, 19 (01) : 176 - 178
  • [9] Automated prediction of lattice parameters from X-ray powder diffraction patterns
    Chitturi, Sathya R.
    Ratner, Daniel
    Walroth, Richard C.
    Thampy, Vivek
    Reed, Evan J.
    Dunne, Mike
    Tassone, Christopher J.
    Stone, Kevin H.
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2021, 54 : 1799 - 1810
  • [10] Artifact identification in X-ray diffraction data using machine learning methods
    Yanxon, Howard
    Weng, James
    Parraga, Hannah
    Xu, Wenqian
    Ruett, Uta
    Schwarz, Nicholas
    [J]. JOURNAL OF SYNCHROTRON RADIATION, 2023, 30 : 137 - 146