Models of thermodiffusion in 1D

被引:4
|
作者
Liu, Yan [1 ]
Reissig, Michael [2 ]
机构
[1] Guangdong Univ Finance, Dept Appl Math, Guangzhou 510521, Guangdong, Peoples R China
[2] Tech Univ Bergakad Freiberg, Fac Math & Comp Sci, D-09596 Freiberg, Germany
基金
中国国家自然科学基金;
关键词
diffusion phenomenon; propagation of singularities; thermodiffusion in 1D; Lp - Lq decay estimates; hyperbolic-parabolic coupled system; WKB analysis; ANISOTROPIC THERMO-ELASTICITY; LINEAR THERMOELASTIC SYSTEMS; DYNAMICAL PROBLEM; PART I; EXISTENCE; 2D;
D O I
10.1002/mma.2839
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of the paper is to study the Cauchy problem for 1D models of thermodiffusion. We explain qualitative properties of solutions. In particular, we show which part of the model has a dominant influence on well-posedness, propagation of singularities, L-p - L-q decay estimates on the conjugate line, and on the diffusion phenomenon. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:817 / 837
页数:21
相关论文
共 50 条
  • [1] Nonlocal Hyperbolic Models in 1D
    Eftimie, Raluca
    [J]. HYPERBOLIC AND KINETIC MODELS FOR SELF-ORGANISED BIOLOGICAL AGGREGATIONS: A MODELLING AND PATTERN FORMATION APPROACH, 2018, 2232 : 107 - 151
  • [2] OLS for 1D Regression Models
    Chang, Jing
    Olive, David J.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (10) : 1869 - 1882
  • [3] Comparison of 1D/1D and 1D/2D Coupled (Sewer/Surface) Hydraulic Models for Urban Flood Simulation
    Leandro, Jorge
    Chen, Albert S.
    Djordjevic, Slobodan
    Savic, Dragan A.
    [J]. JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 2009, 135 (06): : 495 - 504
  • [4] 4D EFFECTS IN 1D MODELS
    DISINGER, J
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1993, 205 : 111 - NUCL
  • [5] Variable selection for 1D regression models
    Olive, DJ
    Hawkins, DM
    [J]. TECHNOMETRICS, 2005, 47 (01) : 43 - 50
  • [6] Modelling fibrinolysis: 1D continuum models
    Bannish, Brittany E.
    Keener, James P.
    Woodbury, Michael
    Weisel, John W.
    Fogelson, Aaron L.
    [J]. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2014, 31 (01): : 45 - 64
  • [7] New integrable 1D models of superconductivity
    de Leeuw, Marius
    Pribytok, Anton
    Retore, Ana L.
    Ryan, Paul
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (38)
  • [8] Thermodiffusion models
    Srinivasan, Seshasai
    Saghir, M. Ziad
    [J]. SpringerBriefs in Applied Sciences and Technology, 2013, 0 (9781461455981): : 11 - 55
  • [9] INTERACTING ELECTRONS IN 1D - APPLICABILITY OF HUBBARD MODELS
    PAINELLI, A
    GIRLANDO, A
    [J]. SYNTHETIC METALS, 1988, 27 (1-2) : A15 - A20
  • [10] Exact Mobility Edges for 1D Quasiperiodic Models
    Wang, Yongjian
    Xia, Xu
    You, Jiangong
    Zheng, Zuohuan
    Zhou, Qi
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 401 (03) : 2521 - 2567