Computational Fluid Dynamics Analysis of Diffuse Vacuum Arcs

被引:0
|
作者
Vaze, Mahesh [1 ]
Acharya, Viren [1 ]
Hemachander, M. [1 ]
Kulkarni, Sandeep [1 ]
机构
[1] Crompton Greaves Ltd, Global R&D Ctr, Bombay 400042, Maharashtra, India
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A two-dimensional axi-symmetric numerical model is developed in order to understand the characteristics of diffused vacuum arc. Vacuum arcs mainly consist of metal vapors which are generated by local evaporation of the contact material due to higher current densities. Strong coupling and high gradients between many parameters like, current densities, temperatures, electrical conductivity, magnetic field and high velocities of plasmas pose many challenges in modeling vacuum arcs. Present work consists of solution of two-fluid equations for electrons and ions. In addition to fluid equations, Maxwell's equations are solved to obtain the Lorentz force and Joule heat which are implemented as source to momentum and energy equations respectively. Simulation results show the variation of the ion and electron number densities, their temperatures, velocities and magnetic flux.
引用
收藏
页码:309 / 312
页数:4
相关论文
共 50 条
  • [1] Vacuum Arcs with Diffuse Cathode Attachment (Review)
    Polishchuk, V. P.
    Usmanov, R. A.
    Melnikov, A. D.
    Vorona, N. A.
    Yartsev, I. M.
    Amirov, R. Kh.
    Gavrikov, A. V.
    Liziakin, G. D.
    Samoylov, I. S.
    Smirnov, V. P.
    Antonov, N. N.
    [J]. HIGH TEMPERATURE, 2020, 58 (04) : 476 - 494
  • [2] A MODEL FOR DC INTERRUPTION IN DIFFUSE VACUUM ARCS
    CHILDS, SE
    GREENWOOD, AN
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 1980, 8 (04) : 289 - 294
  • [3] Computational fluid dynamics applied to the vacuum infusion process
    Andersson, HM
    Lundström, TS
    Langhans, N
    [J]. POLYMER COMPOSITES, 2005, 26 (02) : 231 - 239
  • [4] Vacuum Arcs with Diffuse Cathode Attachment (Review)
    V. P. Polishchuk
    R. A. Usmanov
    A. D. Melnikov
    N. A. Vorona
    I. M. Yartsev
    R. Kh. Amirov
    A. V. Gavrikov
    G. D. Liziakin
    I. S. Samoylov
    V. P. Smirnov
    N. N. Antonov
    [J]. High Temperature, 2020, 58 : 476 - 494
  • [5] Computational Fluid Dynamics Study of New Vacuum Degassing Process
    Mondal, Manas Kumar
    Gupta, Govind Sharan
    Kitamura, Shin-ya
    Maruoka, Nobuhiro
    [J]. CHEMICAL PRODUCT AND PROCESS MODELING, 2009, 4 (03):
  • [6] 3-D Numerical Analysis of Diffuse Vacuum Arcs with an Axial Magnetic Field
    Lee, J. -C.
    Cho, S. -H
    Lee, H. -G.
    Choi, M. -J.
    Kwoto, J. -R.
    Kim, Y. -J.
    [J]. ISDEIV 2008: PROCEEDINGS OF THE XXIIIRD INTERNATIONAL SYMPOSIUM ON DISCHARGES AND ELECTRICAL INSULATION IN VACUUM, VOLS 1 AND 2, 2008, : 361 - +
  • [7] Computational fluid dynamics performance estimation of turbo booster vacuum pump
    Cheng, HP
    Chen, CJ
    Cheng, PW
    [J]. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2003, 125 (03): : 586 - 589
  • [8] Computational Fluid Dynamics Modeling of Acetylene Pyrolysis for Vacuum Carburizing of Steel
    Buchholz, Dominic
    Khan, Rafi Ullah
    Bajohr, Siegfried
    Reimert, Rainer
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (03) : 1130 - 1137
  • [9] Computational Fluid Dynamics (CFD) Analysis of Bioprinting
    Fareez, Umar Naseef Mohamed
    Naqvi, Syed Ali Arsal
    Mahmud, Makame
    Temirel, Mikail
    [J]. ADVANCED HEALTHCARE MATERIALS, 2024, 13 (20)
  • [10] Computational Fluid Dynamics Analysis of Nasal Flow
    Moesges, R.
    Buechner, B.
    Kleiner, M.
    Freitas, R.
    Hoerschler, I.
    Schroeder, W.
    [J]. B-ENT, 2010, 6 (03) : 161 - 165