Quantitative Precipitation Estimation Integrated by Poisson's Equation Using Radar Mosaic, Satellite, and Rain Gauge Network

被引:3
|
作者
Calvetti, Leonardo [1 ]
Beneti, Cesar [2 ]
Antunes Neundorf, Reverton Luis [2 ]
Inouye, Rafael Toshio [2 ]
dos Santos, Tiago Noronha [2 ]
Gomes, Ana Maria [3 ]
Herdies, Dirceu Luis [4 ]
Goncalves de Goncalves, Luis Gustavo [4 ]
机构
[1] Univ Fed Pelotas, Dept Meteorol, Campus Univ Cx Postal 354, BR-96010900 Pelotas, RS, Brazil
[2] Parana Meteorol Syst SIMEPAR, Francisco H dos Santos 210, BR-81531980 Curitiba, Parana, Brazil
[3] Sao Paulo State Univ IPMET UNESP, Meteorol Res Inst, BR-17033360 Bauru, SP, Brazil
[4] Ctr Weather Forecasting & Climate Res CPTEC INPE, Presidente Dutra Highway,Km 39, BR-12630000 Cachoeira Paulista, SP, Brazil
关键词
Quantitative precipitation estimation (QPE); Weather radar; Satellite; Hydrometeorology; Rainfall; GLOBAL PRECIPITATION; SOUTH-AMERICA; PRODUCT; TRMM; PREDICTABILITY; VALIDATION; RESOLUTION; SEVIRI; CMORPH; IMAGES;
D O I
10.1061/(ASCE)HE.1943-5584.0001432
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
High-resolution quantitative precipitation estimation (QPE) from radar and satellite combined with rain gauges is one of the most important guides for hydrological forecasts. Whereas rain gauges provide accurate measurement at a point, remote sensing helps to retrieve the spatial pattern. An algorithm, named Siprec, has been used to blend rain gauges, radar mosaic data, and satellite Eumetsat/MPE estimates by using Poisson's equation over two basins in Brazil. The results indicated that Siprec decreased the root mean square error (RMSE) when compared to radar and satellite estimates as well as improved the correlation. Most of the errors were related to precipitation above 10mmh-1, due to large spatial variability, typical of deep convection. The solution of Poisson's equation acts directly on the data received at a certain time, converging the amplitude to the rain gauge values and keeping the spatial distribution of the radar or satellite measurement without a priori adjustments. This is an important advantage in an operational environment because it does not require frequent processing to update the weights like other schemes. (C) 2016 American Society of Civil Engineers.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Quantitative Precipitation Estimation using High Density Rain Gauge Network in Seoul Area
    Yoon, Seong-Sim
    Lee, Byongju
    Choi, Youngjean
    [J]. ATMOSPHERE-KOREA, 2015, 25 (02): : 283 - 294
  • [2] Objective Reduction of Rain Gauge Network via Geostatistical Analysis of Uncertainty in Radar-Gauge Precipitation Estimation
    Seo, Dong-Jun
    Siddique, Ridwan
    Ahnert, Peter
    [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2015, 20 (04)
  • [3] On precipitation measurements collected by a weather radar and a rain gauge network
    Sebastianelli, S.
    Russo, F.
    Napolitano, F.
    Baldini, L.
    [J]. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2013, 13 (03) : 605 - 623
  • [4] Weather Radar and Rain-Gauge Data Fusion for Quantitative Precipitation Estimation: Two Case Studies
    Cuccoli, Fabrizio
    Facheris, Luca
    Antonini, Andrea
    Melani, Samantha
    Baldini, Luca
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (09): : 6639 - 6649
  • [5] Assessing Quantitative Precipitation Estimation Methods Based on the Fusion of Weather Radar and Rain-Gauge Data
    Biondi, Alessio
    Facheris, Luca
    Argenti, Fabrizio
    Cuccoli, Fabrizio
    Antonini, Andrea
    Melani, Samantha
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [6] Validating Radar and Satellite Precipitation Estimates Against Rain Gauge Records in Slovakia
    Mojzis, Jan
    Kvassay, Marcel
    [J]. DATA SCIENCE AND ALGORITHMS IN SYSTEMS, 2022, VOL 2, 2023, 597 : 157 - 165
  • [7] Application of Segmental-Correction Machine Learning Methods in Radar Quantitative Precipitation Estimation Correction by Rain Gauge
    Wang, Yu
    Zhang, Lejian
    Chen, Yubao
    Han, Lei
    Ge, Yurong
    Sha, Yizhuo
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6714 - 6717
  • [8] Merging radar and rain gauge data by using spatial-temporal local weighted linear regression kriging for quantitative precipitation estimation
    Zhang, Guofeng
    Tian, Guanghui
    Cai, Daxin
    Bai, Rui
    Tong, Jinhe
    [J]. JOURNAL OF HYDROLOGY, 2021, 601
  • [9] 3-hourly quantitative precipitation estimation over Central and Northern Europe from rain gauge and radar data
    Rubel, Franz
    Brugger, Katharina
    [J]. ATMOSPHERIC RESEARCH, 2009, 94 (04) : 544 - 554
  • [10] Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting
    Yilmaz, KK
    Hogue, TS
    Hsu, KL
    Sorooshian, S
    Gupta, HV
    Wagener, T
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2005, 6 (04) : 497 - 517