DShaper: an approach for handling missing low-Q data in pair distribution function analysis of nanostructured systems

被引:24
|
作者
Olds, Daniel [1 ,2 ]
Wang, Hsiu-Wen [2 ,3 ]
Page, Katharine [1 ,2 ]
机构
[1] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA
[2] Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA
[3] Oak Ridge Natl Lab, Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA
来源
关键词
pair distribution function data analysis; shape functions; nanostructured systems; DShaper; RADIAL-DISTRIBUTION FUNCTIONS; SMALL-ANGLE SCATTERING; X-RAY-DIFFRACTION; ATOMIC-STRUCTURE; NANOPARTICLES; NANOCRYSTALS; MECHANISM; DISORDER; SIZE;
D O I
10.1107/S1600576715016581
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This article discusses the potential problems and currently available solutions in modeling powder-diffraction-based pair distribution function (PDF) data from systems where morphological feature information content includes distances in the nanometre length scale, such as finite nanoparticles, nanoporous networks and nanoscale precipitates in bulk materials. The implications of an experimental finite minimum Q value are reviewed by simulation, which also demonstrates the advantages of combining PDF data with small-angle scattering data. A simple Fortran90 code, DShaper, is introduced, which may be incorporated into PDF data fitting routines in order to approximate the so-called 'shape function' for any atomistic model.
引用
收藏
页码:1651 / 1659
页数:9
相关论文
共 36 条
  • [1] DShaper: An approach for handling missing low-Q data in pair distribution function analysis of nanostructured systems
    Olds, Daniel (oldsdp@ornl.gov), 1651, International Union of Crystallography, 5 Abbey Road, Chester, CH1 2HU, United Kingdom (48):
  • [2] Extraction of the missing low-Q data from small-angle scattering data
    Doherty, GK
    Poland, GA
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1996, 29 (pt 1) : 53 - 60
  • [3] Atomic pair distribution function (PDF) analysis of nanostructured and disordered materials
    Billinge, Simon
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [4] Applications of principal component analysis to pair distribution function data
    Chapman, Karena W.
    Lapidus, Saul H.
    Chupas, Peter J.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2015, 48 : 1619 - 1626
  • [5] Estimation of Distribution Function Based on Ranked Set Sampling: Missing Data Approach
    Ashour, Samir Kamel
    Abdallah, Mohamed Soliman
    THAILAND STATISTICIAN, 2020, 18 (01): : 27 - 42
  • [6] A Generalised Data Analysis Approach for Baggage Handling Systems Simulation
    Vu Thanh Le
    Zhang, James
    Johnstone, Michael
    Nahavandi, Saeid
    Creighton, Doug
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 1681 - 1687
  • [7] X-ray pair distribution function analysis of nanostructured materials using a Mythen detector
    Haverkamp, Richard G.
    Wallwork, Kia S.
    JOURNAL OF SYNCHROTRON RADIATION, 2009, 16 : 849 - 856
  • [8] Supervised Learning Approach for State Estimation in Distribution Systems with missing Input Data
    Winter, Andreas
    Igel, Michael
    Schegner, Peter
    2021 IEEE PES INNOVATIVE SMART GRID TECHNOLOGY EUROPE (ISGT EUROPE 2021), 2021, : 318 - 322
  • [9] Stability analysis of sample data systems with input missing: A hybrid control approach
    Li, Liming
    Li, Tao
    ISA TRANSACTIONS, 2019, 90 : 116 - 122
  • [10] Nonequilibrium Green function approach to the pair distribution function of quantum many-body systems out of equilibrium
    Bonitz, M.
    Hermanns, S.
    Kobusch, K.
    Balzer, K.
    PROGRESS IN NONEQUILIBRIUM GREEN'S FUNCTIONS V (PNGF V), 2013, 427